Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства – ВИЖ имени академика Л.К. Эрнста»
Известно, что физиологическое состояние матери в период беременности имеет решающее значение для развития плода; неблагоприятные воздействия на развивающийся плод, в том числе связанные с ухудшением нутритивного статуса матери, зачастую вызывают ухудшение здоровья во взрослой жизни потомства; тем не менее знания о потенциальных долгосрочных последствиях таких воздействий для продуктивных животных ещё ограниченны. Такие знания необходимы для определения наилучших стратегий управления, чтобы свести к минимуму неблагоприятные последствия для продуктивности животных и избежать возможной передачи нежелательных эффектов в последующие поколения. Цель данной работы – систематизация результатов исследований по изучению влияния условий внутриутробного развития на формирование фенотипических признаков у рождённого потомства и на проявление этих эпигенетических эффектов в последующих поколениях. Основные разделы: влияние нутритивного статуса матери в разные сроки беременности на программирование развития и продуктивные качества потоства; влияние кормовых добавок полиненасыщенных жирных кислот и доноров метильной группы на эффекты фетального программирования; наследование эпигенетических модификаций и возможные механизмы трансгенерационных эффектов. Обсуждается возможность объединения достижений в понимании роли эпигенетических эффектов в формировании фенотипических признаков с результатами исследовательских работ на уровне организма и популяций животных, которые могут использоваться на практике для прогнозирования племенных качеств и повышения жизнеспособности продуктивных животных.
1. Aiken C., Ozanne S. Sex differences in developmental programming models. Reproduction. 2013. 145: 1-13
2. Anway M.D., Leathers C., Skinner M.K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology. 2006a, 12: 5515-5523.
3. Anway M.D., Memon M.A., Uzumcu M., Skinner M.K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 2006b. 6: 868-879.
4. Banchero G.E., Clariget R.P., Bencini R., Lindsay D.R., Milton J.T., Martin G.B. Endocrine and metabolic factors involved in the effect of nutrition on the production of colostrum in female sheep. Reprod. Nutr. Dev. 2006. 46: 447-460. doi: 10.1051/rnd:2006024
5. Barb C., Kraeling R. Role of leptin in the regulation of gonadotropin secretion in farm animals. Anim. Reprod. Sci. 2004. 82: 155-167. doi: 10.1016/j.anireprosci.2004.04.032
6. Barcelos S.S., Nascimento K.B., Silva T.E et al. The effects of prenatal diet on calf performance and perspectives for fetal programming studies: a meta-analytical investigation Animals (Basel). 2022. 12(16): 2145.
7. Barker D.J.P. 1995. Fetal origins of coronary heart disease. Brit. Med. J. l311: 171-174.
8. Barker D.J.P. The developmental origins of adult disease. J. Am. Coll. Nutr. 2004. 23(Suppl. 6): 588-595. doi: 10.1080/07315724.2004.10719428.
9. Bartle D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009. 136, 215-233.
10. Berry D.P., Lonergan P., Butler S.T. et al. Negative influence of high maternal milk production before and afterconception on offspring survival and milk production in dairy cattle. J. Dairy Sci. 2008. 91. 329-337
11. Batistel F., Alharthi A.S., Yambao R.R., Elolimy A.A., Pan Y.-X., Parys C., Loor J.J. Methionine supply during late-gestation triggers offspring sex-specific divergent changes in metabolic and epigenetic signatures in bovine placenta. J. Nutr. 2019. 149: 6-17. doi: 10.1093/jn/nxy240
12. Beach R.S., Gershwin M.E., Hurley L.S. Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science. 1982. 4571: 469-471.
13. Bell A.W., Greenwood P.L. Prenatal origins of postnatal variation in growth, development and productivity of ruminants. Anim. Prod. Sci. 2016. 56: 1217-1232. doi: 10.1071/AN15408.
14. Bell A.W., Ehrhardt R.A. Regulation of placental nutrient transport and implications for fetal growth. Nutr. Res. Rev. 2002. 15: 211-230. doi: 10.1079/NRR200239
15. Benyshek D.C., Johnston C.S., Martin J.F. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia. 2006. 5: 1117-1119.
16. Bernal A.B., Vickers M.H., Hampton M.B., Poynton R.A., Sloboda D.M. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS One. 2010. 12: e15558.
17. Bilbo S.D., Schwarz J.M. The immune system and developmental programming of brain and behavior. Front. Neuroendocrin. 2012. 3: 267-286.
18. Bird A.P., Wolffe A.P. Methylation-induced repression-belts, braces, andchromatin. Cell. 1999. 5, 451-454.
19. Bonnet M., Cassar-Malek I., Chilliard Y., Picard B. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Anim. Int. J. Anim. Biosci. 2010. 4: 1093. doi: 10.1017/S1751731110000601
20. Bormann J., Wiggans G.R., Druet Tand Gengler N. Within-herd effects of ageat test day and lactation stage on test-day yields. J. Dairy Sci. 2003. 86. 3765-3774.
21. Braunschweig M., Jagannathan V., Gutzwiller A., Bee G. Investigations on trans- generational epigenetic response down the male line in F2 pigs. PLoS One. 2012: 2:e30583.
22. Brett K.E., Ferraro Z.M., Yockell-Lelievre J., Gruslin A., Adamo K.B. Maternal-fetal nutrient transport in pregnancy pathologies: The role of the placenta. Int. J. Mol. Sci. 2014. 15: 16153-16185. doi: 10.3390/ijms150916153
23. Burdge G.C., Hoile S.P., Uller T., Thomas N.A., Gluckman P.D., Hanson M.A., Lillycrop K.A. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS One. 2011. 11: e28282
24. Cafe L.M., Hennessy D.W., Hearnshaw H., Morris S.G., Greenwood P.L. Influences of nutrition during pregnancy an lactation on birth weights and growth to weaning of calves sired by Piedmontese or Wagyu bulls. Austr. J. Exp. Agric. 2006. 46: 245-255. doi: 10.1071/EA05225
25. Carpinello, O.J.; DeCherney, A.H.; Hill, M.J. Developmental Origin of Health and Disease: the history of the Barker hypothesis and assisted technology. Semin. Reprod. Med. 2018. 36: 177-182. doi: 10.1055/s-0038-1675779
26. Carranza-Martin A.C., Coleman D.N., Garcia L.G., Furnus C.C., Relling A.E. Prepartum fatty acid supplementation in sheep. III. Effect of eicosapentaenoic acid and docosahexaenoic acid during finishing on performance, hypothalamus gene expression, and muscle fatty acids composition in lambs. J. Anim. Sci. 2018. 96: 5300-5310. doi: 10.1093/jas/sky360
27. Carvalho E.B., Costa T.C., Sanglard L.P., Nascimento K.B., Meneses J.A.M., Galvão M.C., Serão N.V.L., Duarte M.S., Gionbelli M.P. Transcriptome profile in the skeletal muscle of cattle progeny as a function of maternal protein supplementation during mid-gestation. Livest. Sci. 2022. 263: 104995. doi: 10.1016/j.livsci.2022.104995.
28. Chen Q., Yan W., Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 2016. 17: 733-743. doi: 10.1038/nrg.2016.106
29. Cherepanov G.G. A morpho-physiological conception and model of animal growth. J. Anim. Feed Sci. 2001. 10: 385-397.
30. Cherepanov G.G. Prediction of cows viability: a new look at the old problem. Agric. Res. Technol. (ARTOAJ). 2018. Vol. 141. Issue 5: ARTOAJ.MS.ID.555931; doi: 10.19080/ARTOAJ.2018.14.555931.
31. Сherepаnov G.G., Kharitonov E.L., Ostrenko K.S. In silico predictions on the productive life span and theory of its developmental origin in dairy cows. Animals. 2022. 12(6): 684-698.
32. Chernoff N., Gage M.I., Stoker T.E., Cooper R.L., Gilbert M.E., Rogers E.H. Reproductive effects of maternal and pre-weaning undernutrition in rat offspring: age at puberty, onset of female reproductive senescence and intergenerational pup growth and viability. Reprod. Toxicol. 2009. 4: 489-494.
33. Choi Y.J., Jang K., Yim D.S. et al. Effects of compensatory growth on the expression of milk protein gene and biochemical changes of the mammary gland in Holstein cows. J. Nutr. Biochem. 1998. 9, 380-387.
34. Connor E.E,, Siferd S., Elsasser T.H. et al. Effect of increased milking frequency on gene expression in the bovine mammary gland. BioMed. Centr. Genom. 2008. 9: 362.
35. Copping K., Hoare A., Callaghan M., McMillen I., Rodgers R., Perry V. Fetal programming in 2-year-old calving heifers: Peri-conception and first trimester protein restriction alters fetal growth in a gender-specific manner. Anim. Prod. Sci. 2014. 54: 1333-1337. doi: 10.1071/AN14278
36. Crescenzo R., Lionetti L., Mollica M.P., Ferraro M., D’Andrea E., Mainieri D., Dulloo A.G., Liverini G,, Iossa S. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction. Diabetes. 2006. 8: 2286-2293.
37. Cropley J.E., Suter C.M., Beckman K.B., Martin D.K. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc. Nat. Acad. Sci. USA. 2006. 103: 17308-17312.
38. Cummins J.M. The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod. Biomed. Online. 2002. 2: 176-182.
39. Dean W., Santos F., Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Develop. Biol. 2003. 14: 93-100.
40. Dickinson S.E., Elmore M.F., Kriese-Anderson L. et al, Evaluation of age, weaning weight, body condition score, and reproductive tract score in pre-selected beef heifers relative to reproductive potential. J. Anim. Sci. Biotechnol. 2019. 10: 18. doi: 10.1186/s40104-019-0329-6
41. Donkin I., Barrès R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018. 14: 1-11. doi: 10.1016/j.molmet.2018.02.006
42. Drake A.J., Walker B.R., Seckl J.R. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005. 1: R34-R38.
43. Du M., Yan X., Tong J.F., Zhao J., Zhu M.J. Maternal obesity, inflammation, and fetal skeletal muscle development. Biol. Reprod. 2010. 82: 4-12. doi: 10.1095/biolreprod.109.077099
44. Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010. 88: E51-E60. doi: 10.2527/jas.2009-2311
45. Du M., Zhao J.X., Yan X., Huang Y., Nicodemus L.V., Yue W. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J. Anim. Sci. 2011. 89: 583-590. doi: 10.2527/jas.2010-3386
46. Duarte M.S., Gionbelli M.P., Paulino P.V.R. et al. Effects of maternal nutrition on development of gastrointestinal tract of bovine fetus at different stages of gestation. Livest. Sci. 2013. 153: 60-65. doi: 10.1016/j.livsci.2013.01.006.]
47. Duarte M.S., Gionbelli M.P., Paulino P.V.R. et al. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses. J. Anim. Sci. 2014. 92: 3846-3854. doi: 10.2527/jas.2014-7568
48. Duhl D.M., Vrieling H., Miller K.A., Wolff G.L., Barsh G.S. Neomorphic agouti mutations in obese yellow mice. Nature Genetics. 1994. 8: 59-65.
49. Ferguson-Smith A.C. Genomic imprinting: The emergence of an epigenetic paradigm. Nat. Rev. Genet. 2011. 12: 565-575. doi: 10.1038/nrg3032
50. Ferreira A.O., Vasconcelos B.G., Favaron P.O. et al. Desenvolvimento do sistema nervoso central de bovinos. Pesqui. Vet. Bras. 2018. 38: 147-153. doi: 10.1590/1678-5150-pvb-5020
51. Ferreira M.F.L., Rennó L.N., Detmann E. et al. Performance, metabolic and hormonal responses of grazing Nellore cows to an energy-protein supplementation during the pre-partum phase. BMC Vet. Res. 2020. 16: 108.
52. Finucane K.A., McFadden T.B., Bond J.P., Kennelly J.J., Zhao F.Q. Onset oflactation in the bovine mammary gland: gene expression profiling indicates astrong inhibition of gene expression in cell proliferation. Funct. Integr. Genom. 2008. 8: 251-264.
53. Fisher-Heffernan R.E., O’Rashid M.M., AlZahal O., Quinton M., Boermans H.J., McBride B.W. Fishmeal supplementation during ovine pregnancy and lactation protects against maternal stress-induced programming of the offspring immune system. BMC Vet. Res. 2015. 11: 266. doi: 10.1186/s12917-015-0573-8
54. Fontes P., Oosthuizen N., Ciriaco F. et al. Effects of nutrient restriction on the metabolic profile of Bos indicus influenced and B. taurus suckled beef cows. Animal. 2021. 15: 100-166. doi: 10.1016/j.animal.2020.100166
55. Ford J.A.J., Park C.S. Nutritionaly directed compensatory growth enhances heifer development and lactation potential. J. Dairy Sci. 2001. 84: 1669-1678.
56. Francis D., Diorio J., Liu D., Meaney M.J. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999. 5442: 1155-1158.
57. Friggens N.C., Thorup V.M. From monitoring to precision phenotyping: Towards a systemic use of precision livestock measures in dairy herds. Proc. N.Z. Soc. Anim. Prod. 2015. 15: 146-148.
58. Gabory A., Attig L., Junien C. Sexual dimorphism in environmental epigenetic programming. Mol. Cell. Endocr. 2009. 304: 8-18.
59. Garcia M., Greco L.F., Lock A.L., Block E., Santos J.E.P., Thatcher W.W. Supplementation of essential fatty acids to Holstein calves during late uterine life and first month of life alters hepatic fatty acid profile and gene expression. J. Dairy Sci. 2016. 99: 7085-7101. doi: 10.3168/jds.2015-10472
60. Garg M., Thamotharan M., Dai Y., Lee P.W., Devaskar S.U. Embryo transfer of the F2 postnatal calorie restricted female rat offspring into a control intra-uterine environment normalizes the metabolic phenotype. Metabolism 2013. 62: 432-441.
61. Gillman M.W. Developmental origins of health and disease. N. Engl. J. Med. 2005. 353: 1848-1850.
62. Gill-Randall R., Adams D., Ollerton R.L., Lewis M., Alcolado J.C. Type 2 diabetes mellitus — genes or intrauterine environment? An embryo transfer paradigm in rats. Diabetologia 2004. 8: 1354-1359.
63. Gionbelli T., Rotta P., Veloso C. et al. Intestinal development of bovine foetuses during gestation is affected by foetal sex and maternal nutrition. J. Anim. Physiol. Anim. Nutr. 2017. 101: 493-501. doi: 10.1111/jpn.12572 [
64. Gurevitch J., Koricheva J., Nakagawa S., Stewart G. Meta-analysis and the science of research synthesis. Nature. 2018. 555: 175-182. doi: 10.1038/nature25753
65. Haghighi F., Galfalvy H., Chen S., Huang Y.-Y., Cooper T.B., Burke A.K. DNA methylation perturbations in genes involved in polyunsaturated fatty acid biosynthesis associated with depression and suicide risk. Front. Neurol. 2015. 6: 92. doi: 10.3389/fneur.2015.00092
66. Harrison M., Langley-Evans S.C. Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br. J. Nutr. 2009. 7: 1020-1030.
67. Hemmings D.G., Veerareddy S., Baker P.N., Davidge S.T. Increased myogenic responses in uterine. but not mesenteric arteries from pregnant offspring of diet-restricted rat dams. Biol. Reprod. 2005. 4: 997-1003.
68. Hoffman M., Reed S., Pillai S., Jones A., McFadden K., Zinn S., Govoni K. Physiology and endocrinology symposium: The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. J. Anim. Sci. 2017. 95: 2222-2232. doi: 10.2527/jas.2016.1229
69. Hoffman D.J. , Powell T.L , Barrett E.S. , Hardy D.B. Developmental origins of metabolic diseases Physiol. Rev. 2021. 101(3); 739-795. doi: 0.1152/physrev.00002.2020
70. Huber E., Notaro U.S., Recce S., Rodríguez F.M., Ortega H.H., Salvetti N.R., Rey F. Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim. Reprod. Sci. 2020. 216: 106348. doi: 10.1016/j.anireprosci.2020.106348
71. Hyttel P., Sinowatz F., Vejlsted M. Embriologia Veterinária. Rio de Janeiro: Elsevier Ltda. 2012.
72. Ibeagha-Awemu E.M., Zhao X. Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front. Genet. 2015. 6: 302. doi: 10.3389/fgene.2015.00302
73. Igosheva N., Abramov A.Y., Poston L. et al. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010. 4: e10074.
74. Innis S.M. Essential fatty acid transfer and fetal development. Placenta. 2005. 26: S70-S75. doi: 10.1016/j.placenta.2005.01.005
75. Jennings T., Gonda M., Underwood K., Wertz-Lutz A., Blair A. The influence of maternal nutrition on expression of genes responsible for adipogenesis and myogenesis in the bovine fetus. Animal. 2016. 10: 1697-1705. doi: 10.1017/S1751731116000665
76. Jaenisch R. and Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 2003. 33: 245-254.
77. Jirtle R.L., Skinner M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 2007. 4: 253-262.
78. Jones P.A., Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001. 293: 1068-1070.
79. Kabaran S., Besler H.T. Do fatty acids affect fetal programming? J. Health Popul. Nutr. 2015. 33: 14. doi: 10.1186/s41043-015-0018-9
80. Kangaspeska S., Stride B., Me´tivier R., Polycarpou-Schwarz M., Ibberson D., Carmouche R,P,, Benes V,, Gannon F., Reid G. Transient cyclical methylation of promoter DNA. Nature. 2008. 452: 112-115
81. Keisler D.H., Lucy M.C. Perception and interpretation of the effects of undernutrition on reproduction. J. Anim. Sci. 1996. 74: 1-17. doi: 10.2527/1996.74suppl_31x
82. Khanal P., Nielsen M.O. Impacts of prenatal nutrition on animal production and performance: A focus on growth and metabolic and endocrine function in sheep. J. Anim. Sci. Biotechnol. 2017. 8: 75. doi: 10.1186/s40104-017-0205-
83. Kiefer H., Perrier J.P. DNA methylation in bull spermatozoa: Evolutionary impacts, interindividual variability, and contribution to the embryo. Can. J. Anim. Sci. 2019. 100: 1-16. doi: 10.1139/cjas-2019-0071
84. Klose R.J., Bird A.P. Genomic DNA methylation: the mark and itsmediators. Trends Biochem. Sci. 2006. 31: 89-97.
85. Knudsen T.B., Green M.L. Response characteristics of the mitochondrial DNA genome in developmental health and disease. Birth Defects Res. C Embryo Today. 2004. 4: 313-329.
86. Kruse S., Bridges G., Funnell B. et al. Influence of post-insemination nutrition on embryonic development in beef heifers. Theriogenology. 2017. 90: 185-190. doi: 10.1016/j.theriogenology.2016.11.021
87. Ladeira M., Schoonmaker J., Gionbelli M., Dias J., Gionbelli T., Carvalho J.R., Teixeira P. Nutrigenomics and beef quality: A review about lipogenesis. Int. J. Mol. Sci. 2016. 17: 918. doi: 10.3390/ijms1706
88. Larqué E., Demmelmair H., Gil-Sánchez A., Prieto-Sánchez M.T., Blanco J.E., Pagán A. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011. 94 (Suppl. 6): 1908–1913. doi: 10.3945/ajcn.110.001230
89. Le Grand F., Rudnicki M.A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 2007. 19: 628-633. doi: 10.1016/j.ceb.2007.09.012
90. Leese H.J., Hugentobler S.A. et al. Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 2008. 1: 1-8.
91. Love O.P., Chin E.H., Wynne-Edwards K.E., Williams T.D. Stress hormones: A link between maternal condition and sex-biased reproductive investment. Am. Nat. 2005. 166: 751-766. doi: 10.1086/497440.
92. Lumey L.H. Decreased birth weights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paed. Perin. Epidem. 1992. 6: 240-253.
93. Maresca S., Valiente S.L., Rodriguez A.M., Long N.M., Pavan E., Quintans G. Effect of protein restriction of bovine dams during late gestation on offspring postnatal growth, glucose-insulin metabolism and IGF-1 concentration. Livest. Sci. 2018. 212: 120-126. doi: 10.1016/j.livsci.2018.04.009
94. Marquez D., Paulino M., Rennó L., Villadiego F., Ortega R., Moreno D., Martins L., De Almeida D., Gionbelli M., Manso M. Supplementation of grazing beef cows during gestation as a strategy to improve skeletal muscle development of the offspring. Animal. 2017. 11: 2184-2192. doi: 10.1017/S1751731117000982
95. Martin J.R., Lieber S.B., McGrath J., Shanabrough M., Horvath T.L., Taylor H.S. Maternal ghrelin deficiency compromises reproduction in female progeny through altered uterine developmental programming. Endocrinology. 2011. 5: 2060-2066.
96. Martin-Gronert M.S., Ozanne S.E. Mechanisms underlying the developmental origins of disease. Rev. Endocr. Metab. Disord. 2012a. 2: 85-92.
97. Martin-Gronert M.S., Ozanne S.E. Metabolic programming of insulin action and secretion. Diab. Obes. Metab. 2012. 14 (Suppl. 3): 29-39.
98. Mayer B., Zolnai A., Frenyó L.V., Jancsik V., Szentirmay Z., Hammarström L. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology. 2002. 107: 288-296. doi: 10.1046/j.1365-2567.2002.01514.x
99. McLachlan J.A., Burow M., Chiang T.C., Li S.F. Gene imprinting in developmental toxicology: a possible interface between physiology and pathology. Toxicol. Lett. 2001. 120: 161-164.
100. McLean K.J., Boehmer B.H., Spicer L.J., Wettemann R.P. The effects of protein supplementation of fall calving beef cows on pre-and postpartum plasma insulin, glucose and IGF-I, and postnatal growth and plasma insulin and IGF-I of calves. J. Anim. Sci. 2018. 96: 2629-2639. doi: 10.1093/jas/sky173
101. Metivier R., Gallais R., Tiffoche C. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008. 452: 45-50.
102. Mellor D., Flint D., Vernon R., Forsyth I. Relationships between plasma hormone concentrations, udder development and the production of early mammary secretions in twin-bearing ewes on different planes of nutrition. Q. J. Exp. Physiol. Transl. Integr. 1987. 72: 345-356. doi: 10.1113/expphysiol.1987.sp003080
103. Moallem U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J. Dairy Sci. 2018. 101: 8641-8661. doi: 10.3168/jds.2018-14772
104. Mohammadabadi M., Bordbar F., Jensen J., Du M., Guo W. Key genes regulating skeletal muscle development and growth in farm animals. Animals. 2021. 11: 835. doi: 10.3390/ani11030835
105. Molenaar A., Seyfert H.M., Murney R., Biet J., Erdman R., Oden K., Henderson H, Rijnkels M., Stelwagen K., Singh K. Compaction of the alpha-S1-caseinand opening of a defensin promoter occurs during Suberis infection of the bovine mammary gland and after cessation of milking, the casein promoterbegins to close up after 24 hours. Conf. 7th Ann. Intern. Symp: Milk Genomics Human Health. UC Davis, CA, USA, 2010.
106. Moore T., Reik W. Genetic conflict in early development: parentalimprinting in normal and abnormal growth. Rev. Reprod. 1996. 1: 73-77.
107. Morgan H.D., Sutherland H.E., Martin D.I.K., Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genetics. 1999. 23. 314-318.
108. Nehra D., Le H.D., Fallon E.M., Carlson S.J., Woods D., White Y.A. Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell. 2012. 11: 1046-1054. doi: 10.1111/acel.12006
109. Nickles K.R., Hamer L., Coleman D.N., Relling A.E. Supplementation with eicosapentaenoic and docosahexaenoic acids in late gestation in ewes changes adipose tissue gene expression in the ewe and growth and plasma concentration of ghrelin in the offspring. J. Anim. Sci. 2019. 97. 2: 2631-2643. doi: 10.1093/jas/skz141
110. Novosel’tsev, V.N., Novosel’tseva, J.A., Bojko, S.M., Yashin, A.I. Homeostasis and aging: slow-fast mathematical model of senescence and death. In: Modeling and Control in Biomedical Systems. Karlsburg/Greifswald, 2000. P. 71-76.
111. O’Doherty A.M., O’Gorman A., al Naib A., Brennan L., Daly E., Duffy P. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics. 2014. 104: 177-185. doi: 10.1016/j.ygeno.2014.07.006
112. Opsomer G., Van Eetvelde M., Kamal M., Van Soom A. Epidemiological evidence for metabolic programming in dairy cattle. Reprod. Fertil. Dev. 2016. 29: 52-57. DOI: 10.1071/RD1641
113. Ozanne S.E., Constancia M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat. Clin. Pract. Endocr. Metab. 2007. 7: 539-546.
114. Palmer J.R., Hatch E.E., Rao R.S., Kaufman R.H., Herbst A.L., Noller K.L., Titus-Ernstoff L., Hoover R.N. Infertility among women exposed prenatally to diethylstilbestrol. Am. J. Epidemiol. 2001. 4: 316-321.
115. Park C.S., Baik M.G., Keller W.L., Berg I.E., Erickson G.M. Role of compensatory growth in lactation: a stair-step nutrient regimen modulates differentiation and lactation of bovine mammary gland. Growth, Devel. Aging. 1989. 53, 159-166.
116. Park C.S. Role of compensatory mammary growth in epigenetic control of gene expression. J. Fed. Am. Soc. Exper. Biol. 2005. 19: 1586-1591.
117. Perdiguero E., Sousa-Victor P., Ballestar E., Muñoz-Cánoves P. Epigenetic regulation of myogenesis. Epigenetics. 2009. 4: 541-550. doi: 10.4161/epi.4.8.10258
118. Pfeifer L.F., Castro N.A., Neves P.M., Cestaro J.P., Siqueira L.G. Development and validation of an objective method for the assessment of body condition scores and selection of beef cows for timed artificial insemination. Livest. Sci. 2017. 197: 82-87. doi: 10.1016/j.livsci.2017.01.011
119. Pfeifer L.F.M., Rodrigues W.B., Nogueira E. Relationship between body condition score index and fertility in beef cows subjected to timed artificial insemination. Livest. Sci. 2021. 248: 104482. doi: 10.1016/j.livsci.2021.104482
120. Pinheiro A.R., Salvucci I.D., Aguila M.B., Mandarim-de-Lacerda C.A. Protein restriction during gestation and/or lactation causes adverse transgenerational effects on biometry and glucose metabolism in F1 and F2 progenies of rats. Clin. Sc.i (Lond). 2008. 5: 381-392.
121. Prayaga K. Evaluation of beef cattle genotypes and estimation of direct and maternal genetic effects in a tropical environment. 1. Growth traits. Aust. J. Agric. Res. 2003. 54: 1013-1025. doi: 10.1071/AR03071
122. Pryce J.E., Harris B.L. Genetics of body condition score in New Zealanddairy cows. J. Dairy Sci. 2006. 89: 4424-4432.
123. Radford E.J., Isganaitis E., Jimenez-Chillaron J. et al. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Gene. 2012. 4: e1002605.
124. Ramírez-Zamudio G.D., da Cruz W.F., Schoonmaker J.P. et al. Effect of rumen-protected fat on performance, carcass characteristics and beef quality of the progeny from Nellore cows fed by different planes of nutrition during gestation. Livest. Sci. 2022. 258: 104851. doi: 10.1016/j.livsci.2022.104851
125. Ramsahoye B.H., Biniszkiewicz D., Lyko F., Clark V., Bird A.P. Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Nat. Acad. Sci. USA. 2000. 97: 5237-5242.
126. Redmer D., Wallace J., Reynolds L. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest. Anim. Endocrinol. 2004. 27: 199-217. doi: 10.1016/j.domaniend.2004.06.006
127. Reik W., Dean W., Walter J. Epigenetic reprogramming in mammalian development. Sciencе. 2001. 5532: 1089-1093.
128. Reik W.. Walter J. Genomic imprinting: parental influence on thegenome. Nat. Rev. Genet. 2001. 2: 21-32.
129. Reynolds L.P., Redmer D.A. Utero-placental vascular development and placental function. J. Anim. Sci. 1995. 73: 1839-1851. doi: 10.2527/1995.7361839x
130. Rodrigues L.M., Schoonmaker J.P., Resende F.D., Siqueira G.R., Rodrigues Machado Neto O., Gionbelli M.P., Ramalho Santos Gionbelli T., Ladeira M.M. Effects of protein supplementation on Nellore cows’ reproductive performance, growth, myogenesis, lipogenesis and intestine development of the progeny. Anim. Prod. Sci. 2020. 61: 371-380. doi: 10.1071/AN20498.
131. Riggs A.D., Martienssen R.A., Russo V.E.A. Introduction. In: Epigenetic mechanisms of gene regulation (ed. V.E.A. Russo, R.A. Martienssen and A.D. Riggs). Vol. 32, pp. 1-4. NY: Cold Spring Harbor Laboratory Press, 1996.
132. Rosa-Velazquez M., Batistel F., Pinos-Rodriguez J.M., Relling A.E. Effects of maternal dietary omega-3 polyunsaturated fatty acids and methionine during late gestation on fetal growth, DNA methylation, and mRNA relative expression of genes associated with the inflammatory response, lipid metabolism and DNA methylation in sheep. J. Anim. Sci. Biotechnol. 2020. 11: 111. doi: 10.1186/s40104-020-00513-7
133. Rijnkels M., Kabotyanski E., Montazer-Torbati M.B., Beauvais C.H., Vassetzky Y., Rosen J.M., Devinoy E. The epigenetic landscape of mammarydevelopment and functional differentiation. J. Mamm. Gland Biol. Neopl. 2010. 15: 85-100.
134. Roche J.R., Lee J.M. Berry D.P. Pre-conception energy balance and secondary sex ratio – a partial support for the Trivers–Willard hypothesis in dairy cows. J. Dairy Sci. 2006. 89: 2119-2125
135. Roque-Jiménez J.A., Rosa-Velázquez M., Pinos-Rodríguez J.M. et al. Role of long chain fatty acids in developmental programming in ruminants., Animals (Basel). 2021. 11(3): 762-778.
136. Rutten C.J., Velthuis A.G.J., Steeneveld W., Hogeveen H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013. 96: 1928-1952. https://doi.org/10.3168/jds.2012-6107 23462176
137. Ruvinsky A. Basics of gametic imprinting. J. Anim. Sci. 1999. 77: 228-237.
138. Santos J.E.P., Bilby T.R., Thatcher W.W., Staples C.R., Silvestre F.T. Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod. Domest. Anim. 2008. 43 (Suppl. 2): 23-30. doi: 10.1111/j.1439-0531.2008.01139.x
139. Schumacher A., Petronis A. Epigenetics of complex diseases: from general theory to laboratory experiments. Curr. Top. Microbiol. Immunol. 2006. 310: 81-115.
140. Sejrsen K., Huber J.T., Tucker H.A., Akers R.M. Influence of nutrition on mammary development in pre- and postpubertal heifers. J. Dairy Sci. 1982. 65: 793-800.
141. Singh K., Davis S.R., Dobson J.M. et al. cDNA microarray analysis reveals antioxidant and immunegenes are up-regulated during involution of the bovine mammary gland. J. Dairy Sci. 2008. 91: 2236-2246.
142. Singh К., Molenaar A.J., Swanson K.M., Gudex B., Arias J.A., Erdman R.A., Stelwagen K.. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production. Animal, 2012. 6: 375-381. https://doi.org/10.1017/S1751731111002564
143. Shrestha N., Sleep S.L., Cuffe J.S.M., Holland O.J., Perkins A.V., Yau S.Y. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin. Exp. Pharmacol. Physiol. 2020. 47: 907-915. doi: 10.1111/1440-1681.13244
144. Simopoulos A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002. 56: 365-379. doi: 10.1016/S0753-3322(02)00253-6
145. Skinner M.K. What is an epigenetic transgenerational phenotype F3 or F2. Reprod. Toxicol. 2008. 1: 2-6.
146. Sloboda D.M., Howie G.J., Pleasants A., Gluckman P.D., Vickers M.H. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One. 2009. 8: e6744.
147. Starbuck M.J., Dailey R.A., Inskeep E.K. Factors affecting retention of early pregnancy in dairy cattle. Anim. Reprod. Sci. 2004. 84: 27-39. doi: 10.1016/j.anireprosci.2003.12.009
148. Stewart R.J., Preece R.F., Sheppard H.G. Twelve generations of marginal protein deficiency. Br. J. Nutr. 1975. 2: 233-253.
149. Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature. 2003. 403, 41-45.
150. Suchyta S.P., Sipkovsky S., Halgren R.G. et al. Bovine mammary gene expression profiling using a cDNA microarray enhanced for mammary-specific transcripts. Physiol. Genom. 2000. 16: 8-18.
151. Swanson J.M.; Wadhwa P.D. (Eds) Genes, Environments and Human Development, Health and Disease (GEHDHD) meeting. Arnold and Mabel Beckman Center of the National Academy of Sciences. September 7–8, 2006.
152. Swanson T., Hammer C., Luther J., Carlson D., Taylor J., Redmer D., Neville T., Reed J., Reynolds L., Caton J. Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs. J. Anim. Sci. 2008. 86: 2415-2423. doi: 10.2527/jas.2008-0996
153. Swanson K.M., Stelwagen K., Erdman R.A., Singh K. Acute DNA methylation changes are associated with involution and re-initiation of lactationin dairy cows. J. Dairy Sci. 2011. 94(E-suppl. 1): 433.
154. Tarry-Adkins J.L., Ozanne S.E. Mechanisms of early life programming: current knowledge and future directions. Am. J. Clin. Nutr. 2011. 6(Suppl): 1765S-1771S.
155. Thamotharan M., Garg M., Oak S., Rogers L.M., Pan. G., Sangiorgi F., Lee P.W., Devaskar S.U. Transgenerational inheritance of the insulin-resistant phenotype in embryo- transferred intrauterine growth-restricted adult female rat offspring. Am. J. Physiol. Endocrin. Metab. 2007. 5: E1270-E1279.
156. Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009. 5: R1516-R1525.
157. Vickers M.H. Developmental programming of the metabolic syndrome – the critical windows for intervention. World J. Diabetes. 2011. 9: 137-148.
158. Thornton K.J. Impacts of nutrition on the proliferation and differentiation of satellite cells in livestock species. J. Anim. Sci. 2019. 97: 2258-2269. doi: 10.1093/jas/skz081
159. Torrens C., Brawley L., Barker A.C., Itoh S., Poston L., Hanson M.A. Maternal protein restriction in the rat impairs resistance artery but not conduit artery function in pregnant offspring. J. Physiol. 2003. 547(1): 77-84.
160. Trivers R.L., Willard D.E. Natural selection of parental ability to vary the sex ratio of offspring. Science. 1973. 179: 90-92. doi: 10.1126/science.179.4068.90
161. Underwood K., Tong J., Price P., Roberts A., Grings E., Hess B., Means W., Du M. Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers. Meat Sci. 2010. 86: 588-593. doi: 10.1016/j.meatsci.2010.04.008
162. Vanselow J., Yang W., Herrmann J., Zerbe H., Schuberth H.J., Petzl W., Tomek W., Seyfert H.M. DNA-remethylation around a STAT5-binding enhancer in the far distal alpha S1-casein promoter is associated with abrupt shut-down of alpha S1-casein synthesis during acute mastitis. J. Molec. Endocr. 2006. 37: 463-477.
163. Van Tassell C.P., Wiggans G.R., VanRaden P.M., Norman H.D. Changes in USDA-DHIA genetic evaluations. Animal Improvement Programs Laboratory Research Report CH9 (8-97). US Department of Agriculture / Agricultural Research Service, Washington, DC, USA. 1997.
164. Van Tran L., Malla B.A., Kumar S., Tyagi A.K. Polyunsaturated fatty acids in male ruminant reproduction: a review. Asian-Austral. J. Anim. Sci. 2017. 30: 622-637. doi: 10.5713/ajas.15.1034
165. Vasicek T.J., Zeng L, Guan X.J., Zhang T., Costantini F., Tilghman S.M. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics. 1997. 147: 777-786.
166. Walsh S.W., Mehta J.P., McGettigan P.A., Browne J.A., Forde N., Alibrahim R.M. Effect of the metabolic environment at key stages of follicle development in cattle: Focus on steroid biosynthesis. Physiol. Genom. 2012. 44: 504-517. doi: 10.1152/physiolgenomics.00178.2011
167. Waterland R.A., Jirtle R.L Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 2003. 23: 5293-5300.
168. Weaver I.C., Cervoni N., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., Meaney M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004. 8: 847-854.
169. White J.P., Gao S., Puppa M.J., Sato S., Welle S.L., Carson J.A. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell. Endocrinol. 2013. 365: 174-186. doi: 10.1016/j.mce.2012.10.019
170. Wittum T.E., Perino L.J. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am. J. Vet. Res. 1995. 56: 1149-1154.
171. Wolff G.L., Kodell R.L., Moore S.R.,Cooney C.A. Maternal epigenetics andmethyl supplements affect agouti gene expression in Avy/a mice. J. Fed. Am. Soc. Exper. Biol. 1998. 12: 949-957.
172. Yang A.S., Estecio M.R., Doshi K., Kondo Y., Tajara E.H., Issa J.P. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004. 3: e38.
173. Zaborski D., Grzesiak W., Szatkowska I., Dybus A., Muszynska M., Jedrzejczak M. Factors affecting dystocia in cattle. Reprod. Domest. Anim. 2009. 44: 540-551. doi: 10.1111/j.1439-0531.2008.01123.x.
174. Zago D., Canozzi M.E.A., Barcellos J.O.J. Pregnant beef cow’s nutrition and its effects on postnatal weight and carcass quality of their progeny. PLoS One. 2020. 15: e0237941. doi: 10.1371/journal.pone.0237941.
175. Zambrano E., Martinez-Samayoa P.M., Bautista C.J. et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J. Physiol. 2005. 566(1): 225-236.176. Zhu M.J., Ford S.P., Nathanielsz P.W., Du M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol. Reprod. 2004. 71: 1968-1973. doi: 10.1095/biolreprod.104.034561