Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства – ВИЖ имени академика Л.К. Эрнста»
Последние достижения исследований в области физиологии питания животных показывают, что потребности организма в определённых заменимых аминокислотах у кур и свиней варьируют в зависимости от уровня продуктивности, физиологического статуса и условий окружающей среды. Многие аминокислоты, традиционно не относящиеся к незаменимым, в том числе, глутамин, глутамат, пролин, глицин и аргинин, помимо их нутритивной ценности, имеют и большое функциональное значение, поэтому достаточное поступление их с кормом необходимо для обеспечения высокой продуктивности и поддержаниия здоровья продуктивных животных, в том числе цыплят, бройлеров и кур-несушек. Основные разделы обзора: особенности переваривания кормового белка и всасывания аминокислот у кур; синтез аминокислот, катаболизм аминокислот, тканеспецифические особенности метаболизма глутамата и глутамина; взаимосвязь факторов аминокислотного питания, продуктиности, антиоксидантного статуса и неврологических функций, пересмотр концепции идеального протеина в питании птицы. Предложенные в последние годы варианты систем нормирования аминокислотного питания птицы с оценкой оптимального количества и соотношения эссенциальных аминокислот в рационе, позволяют снизить содержание белка в рационе, повысить эффективность использования питательных веществ и продуктивные показатели при одновременном снижении загрязнения азотом окружающей среды. Потребность в таких разработках актуализируется в связи с получением многочисленных данных о том, что все продуктивные животные (включая птицу) имеют высокую потребность в поступлении с кормом глутамата, глутамина, глицина и пролина. Эти аминокислоты распространены в переработанных источниках кормов животного происхождения, таких как кровяная мука, перьевая мука, мясокостная мука жвачных и побочные продукты переработки птицы Развитие в дальнейших исследованиях новой концепции аминокислотного питания может обеспечить необходимую основу для системно-физиологического анализа, количественной оценки потребности в аминокислотах и совршенствования принципов нормирования питания всех видов продуктивных животных
1. Буряков Н.П., Щукина С.А., Горст К.А., Гайваронская С.А. Применение добавки аминокислоты валина в фазовых рационах для цыплят-бройлеров. // Вестник биотехнологии. 2021. № 1. С. 1-12.
2. Буряков Н.П., Алешин Д.Е. Оптимизация рационов кормления цыплят-бройлеров. // Доклады ТСХА. 2018. Выпуск 290. Ч. 3. С. 131-133.
3. Еримбетов К.Т., Обвинцева О.В., Соловьева А.Г., Федорова А.В., Земляной Р.А. Сигнальные пути и факторы регуляции синтеза и распада белков в скелетных мышцах (обзор). // Проблемы биологии продуктивных животных. 2020. № 1. С. 24-33.
4. Кун К. Идеальное аминокислотное соотношение в рационах бройлеров. //Комбикорма. 2011. № 4. С. 65-70.
5. Agostinelli E. Biochemical and pathophysiological properties of polyamines. // Amino Acids. 2020 Vol. 52. nr 2. P. 111-117. doi: 10.1007/s00726-020-02821-8.
6. Asechi M., Tomonaga S., Tachibana T. et al. Intracerebroventricular injection of L-serine analogs and derivatives induces sedative and hypnotic effects under an acute stressful condition in neonatal chicks. // Behav. Brain Res. 2006. Jun 3. Vol. 170. nr 1. P.71-77. doi: 10.1016/j.bbr.2006.02.005.
7. Awad E.A., Zulkifli I., Farjam A.S., Chwen L.T. Amino acids fortification of low-protein diet for broilers under tropical climate. 2. Nonessential amino acids and increasing essential amino acids. // Ital. J. Anim. Sci. 2014. Vol. 13. P. 3297-3301. doi.org/10.4081/ijas.2014.3297
8. Awad E.A., Zulkifli I., Soleimani A.F., Loh T.C. Individual non-essential amino acids fortification of a low-protein diet for broilers under the hot and humid tropical climate. // Poult. Sci. 2015. Vol. 94. nr 11. P. 2772-2777. doi: 10.3382/ps/pev258.
9. Applegate T.J., Angel R. Nutrient requirements of poultry publication: history and need for an update. // J. Appl. Poult. Res. 2014. Vol. 23. P. 567-575. doi.org/10.3382/japr.2014-00980
10. Bailey C.A. Precision poultry nutrition and feed formulation. In: Bazer F.W., Lamb G.C., Wu G. (eds) Animal agriculture: challenges, innovations, and sustainability. // Elsevier New York. 2020. P. 367-378.
11. Baker D.H. Advances in protein-amino acid nutrition of poultry. // Amino Acids. 2009. Vol. 37. nr 1. P. 29-41. doi:10.1007/s00726-008-0198-3
12. Baker D.H., Han Y. Ideal amino acid profile for chicks during the first three weeks posthatching. // Poult. Sci. 1994. Vol. 73. P. 1441-1447.
13. Beaumont M., Blachier F. Amino acids in intestinal physiology and health. // Adv. Exp. Med. Biol. 2020. Vol. 1265. P. 1-20. doi: 10.1007/978-3-030-45328-2_1
14. Badawi M.S., Ali A.H., El-Razik W.M.A., Soliman M.H. Influence of low crude protein diets on broiler chickens performance. // Adv. Anim. Vet. Sci. 2019. Vol. 7. P. 26-33. doi:10.17582/journal.aavs/2019/7.s2.26.33.
15. Belloir P., Méda B., Lambert W. et al. Reducing the CP content in broiler feeds: impact on animal performance, meat quality and nitrogen utilization. // Animal. 2017. Vol. 11. nr 11. P. 1881-1889. doi: 10.1017/S1751731117000660
16. Coon C., Balling R. Asparagine and glutamine metabolism in chicks. Poult. Sci. 1984. Vol. 63. P. 717-729.
17. Choi J., Kong B., Bowker B.C., Zhuang H., Kim W.K. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. // Animals (Basel). 2023. Vol. 13. nr 8. P. 1386 - 1396. doi: 10.3390/ani13081386
18. Corzo A., Kidd M.Т., Dozier I., Vieira S. L. Marginality and needs of dietary valine for broilers fed certain all vegetable diets. // J. Appl. Poult. Res. 2014. Vol. 16. P. 546-554. doi.org/10.3382/japr.2007-00025.
19. Chrystal P.V., Moss A.F., Khoddami A., Naranjo V.D., Selle P.H., Liu S.Y. Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. // Poult. Sci. 2020. Vol. 99. nr 3. P. 1421-1431. doi: 10.1016/j.psj.2019.10.060
20. Curthoys N.P., Watford M. Regulation of glutaminase activity and glutamine metabolism. // Annu. Rev. Nutr. 1995. Vol. 15. P. 133-159.
21. Dong X., Yang C., Tang S., Jiang Q., Zou X. Effect and mechanism of glutamine on productive performance and egg quality of laying hens. // Asian-Australas J. Anim. Sci. 2010. Vol. 23. P. 1049-1056.
22. Dessimoni G.V.I., Dalólio F.S., Moreira J., Teixeira L.V., Bertechini A.G.V. Protease supplementation under amino acid reduction in diets formulated with different nutritional requirements for broilers. // Braz. J. Poult. Sci. 2019. Vol. 21. P. 1-8. doi. org/10.6084/m9.figshare.8030966.v1
23. Estévez M., Geraert P.-A., Liu R., Delgado J., Mercier Y., Zhang W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks-Invited review. // Meat Sci. 2020. Vol. 163. 108087. doi: 10.1016/j.meatsci.2020.108087
24. Elhussiny M.Z., Nishimura H., Tran P.V. et al. Intracerebroventricular injection of taurine induces hypothermia through modifying monoaminergic pathways in chicks. // Eur. J. Pharmacol. 2022. Aug 5. Vol. 928:175092. P. 1-12 doi: 10.1016/j.ejphar.2022.175092
25. Elhussiny M.Z., Tran P.V., Wang Y. et al. Intracerebroventricular injection taurine changes free amino acid concentrations in the brain and plasma in chicks. // Amino Acids. 2023. Vol. 55. nr 2. P.183-192. doi: 10.1007/s00726-022-03216-7
26. Erwan E., Chowdhury V.S., Nagasawa M., Goda R., Otsuka T., Yasuo S., Furuse M. Central injection of L- and D-aspartate attenuates isolation-induced stress behavior in chicks possibly through different mechanisms. // Eur. J. Pharmacol. 2014. Vol. 736. P. 138-142. doi: 10.1016/j.ejphar.2014.04.042
27. Erwan E., Tomonaga S., Yoshida J., Nagasawa M., Ogino Y., Denbow D.M., Furuse M. Central administration of L- and D-aspartate attenuates stress behaviors by social isolation and CRF in neonatal chicks. // Amino Acids. 2012. Vol. 43. nr 5. P. 1969-1976. doi: 10.1007/s00726-012-1272-4.
28. Furukawa K., He W.L., Leyva-Jimenez H., Bailey C.A., Bazer F.W., Toyomizu M., Wu G. Developmental changes in the activities of enzymes for polyamine synthesis in chickens. // Poult. Sci. 2018. Vol. 97. (E-Suppl 1): 3-4.
29. Fisher H., Scott H.M. The essential amino acid requirements of chicks as related to their proportional occurrence in the fat-free carcass. // Arch. Biochem. Biophys. 1954. Vol. 51. P. 517-519.
30. Fouad A.M., El-Senousey H.K., Ruan D., Wang S., Xia W., Zheng C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. // J. Anim. Physiol. Anim. Nutr. (Berl). 2021. Vol. 105. nr 6. P. 1146-1153. doi: 10.1111/jpn.13515.
31. Fouad A.M., El-Senousey H.K., Yang X.J., Yao J.H. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. // Animal. 2013. Vol. 7. nr 8. P. 1239-1245. doi: 10.1017/S1751731113000347
32. Fang Y.Z., Yang S., Wu G. Free radicals, antioxidants, and nutrition. // Nutrition. 2002. Vol. 18. No 10. P. 872-879. doi: 10.1016/s0899-9007(02)00916-4
33. Graber G., Baker D.H. The essential nature of glycine and proline for growing chickens. //Poult. Sci. 1973. Vol. 52. P. 892-896.
34. Glista W.A., Mitchell H.H., Scott H.M. The amino acid requirements of the chick. // Poult. Sci. 1951. Vol. 30. P. 915-920.
35. Gilbert E.R., Li H., Emmerson D.A., Webb K.E.Jr., Wong E.A. Dietary protein composition influences abundance of peptide and amino acid transporter messenger ribonucleic acid in the small intestine of 2 lines of broiler chicks. // Poult. Sci. 2010. Vol. 89. nr 8. P. 1663-1676. doi: 10.3382/ps.2010-00801
36. Haraguchi T., Tomonaga S., Kurauchi I. et al. Intracerebroventricular injection of l-proline modifies food intake in neonatal chicks. // J. Anim. Vet. Adv. 2007. Vol. 6. P. 1255-1257.
37. He W. L., Hou Y. Q., Wu G. 2019. Glutamate and glutamine are the major metabolic fuels in enterocytes of suckling piglets. // J. Anim. Sci. 2019. Vol. 97 (Suppl. 3). P. 68. doi: 10.1093/jas/skz258.141
38. He W., Li P., Wu G. Amino Acid Nutrition and Metabolism in Chickens. // Adv Exp Med Biol. 2021. Vol. 1285. P. 109-131. doi: 10.1007/978-3-030-54462-1_7
39. He W., Furukawa K., Bailey C.A., Wu G. Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of post-hatching developing chickens. // J. Anim. Sci. 2022. Vol. 100. nr 4. P. 1112-1122 skac053. doi: 10.1093/jas/skac053
40. He W., Wu G. Metabolism of Amino Acids in the Brain and Their Roles in Regulating Food Intake. // Adv. Exp. Med. Biol. 2020. Vol. 1265. P. 167-185. doi: 10.1007/978-3-030-45328-2_10
41. Hou Y., Wu G. L-Glutamate nutrition and metabolism in swine. // Amino Acids. 2018. Vol. 50. nr 11. P. 1497-1510. doi: 10.1007/s00726-018-2634-3
42. Hou Y., Wu Z., Dai Z., Wang G., Wu G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. // J. Anim. Sci. Biotechnol. 2017. Vol. 8. P. 24-32. doi: 10.1186/s40104-017-0153-9
43. Holeček M. Aspartic Acid in Health and Disease. // Nutrients. 2023. Sep 17. Vol. 15. nr 18:4023. P. 1-25. doi: 10.3390/nu15184023
44. Hou Y., He W., Hu S., Wu G. Composition of polyamines and amino acids in plant-source foods for human consumption. // Amino Acids. 2019. Vol. 51. nr 8. P. 1153-1165. doi: 10.1007/s00726-019-02751-0
45. Hodkovicova N., Halas S., Tosnerova K., Stastny K., Svoboda M. The use of functional amino acids in different categories of pigs - A review. // Vet. Med. (Praha). 2023. Vol. 68. nr 8. P. 299-312. doi: 10.17221/72/2023-VETMED
46. Hu H., Bai X., Shah A.A., Wen A.Y. et al. Dietary supplementation with glutamine and γ-aminobutyric acid improves growth performance and serum parameters in 22- to 35-day-old broilers exposed to hot environment. // J. Anim. Physiol. Anim. Nutr. (Berl). 2016a. Vol. 100. nr 2. P. 361-370. doi: 10.1111/jpn.12346
47. Hu H., Bai X., Wen A., Shah A.A., Dai S., Ren Q., Wang S., He S., Wang L. Assessment of interactions between glutamine and glucose on meat quality, AMPK, and glutamine concentrations in pectoralis major meat of broilers under acute heat stress. // J. Appl. Poult. Res. 2016b. Vol. 25. P. 370-378
48. Hu S., He W., Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling. //Amino Acids. 2022. Vol. 54. nr 4. P. 513-528. doi: 10.1007/s00726-021-03056-x
49. Hamasu K., Haraguchi T., Kabuki Y., Adachi N., Tomonaga S., Sato H., Denbow D.M., Furuse M. L-proline is a sedative regulator of acute stress in the brain of neonatal chicks. // Amino Acids. 2009. Vol. 37. nr 2. P. 377-382. doi: 10.1007/s00726-008-0164-0
50. Hamasu K., Shigemi K., Tsuneyoshi Y., Yamane H., Sato H., Denbow D.M., Furuse M. Intracerebroventricular injection of L-proline and D-proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks. // Amino Acids. 2010. Vol. 38. nr 1. P. 57-64. doi: 10.1007/s00726-008-0204-9
51. Igarashi K., Uemura T., Kashiwagi K. Assessing acrolein for determination of the severity of brain stroke, dementia, renal failure, and Sjögren's syndrome. // Amino Acids. 2020. Vol. 52. No 2. P. 119-127. doi: 10.1007/s00726-019-02700-x
52. Izumi T., Kawamura K., Ueda H., Bungo T. Central administration of leucine, but not isoleucine and valine, stimulates feeding behavior in neonatal chicks. // Neurosci. Lett. 2004. Jan 9. Vol. 354. nr 2. P. 166-168. doi: 10.1016/j.neulet.2003.09.071.
53. Ilari A., Fiorillo A., Genovese I., Colotti G. Polyamine-trypanothione pathway: an update. // Future Med. Chem. 2017. Vol. 9. P. 61-77. doi.org/10.4155/fmc-2016-0180
54. Johnson C.A., Duong T., Latham R.E., Shirley R.B., Lee J.T. Effects of amino acid and energy density on growth performance and processing yield of mixed-sex Cobb 700×MV broiler chickens. // J. Appl. Poult. Res. 2020. Vol. 29. P. 269-283.
55. Jobgen W.J., Meininger C.J., Jobgen S.C., Li P., Lee M.J., Smith S.B., Spencer T.E., Fried S.K., Wu G. Dietary L-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. // J. Nutr. 2009. Vol. 139. P. 230-237.
56. Kidd M.T., Poernama F., Wibowo T., Maynard C.W., Liu S.Y. Dietary branched-chain amino acid assessment in broilers from 22 to 35 days of age. // J. Anim. Sci. Biotechnol. 2021. Vol. 12. nr 1. P. 1-8. doi: 10.1186/s40104-020-00535-1
57. Klain G.J., Scott H.M., Johnson B.C. The amino acid requirements of the growing chick fed a crystalline amino acid diet. // Poult. Sci. 1960. Vol. 39. P. 39-44.
58. Kluess H.A., Stafford J., Evanson K.W., Stone A.J., Worley J., Wideman R.F. Intrapulmonary arteries respond to serotonin and adenosine triphosphate in broiler chickens susceptible to idiopathic pulmonary arterial hypertension. // Poult. Sci. 2012. Vol. 91. nr 6. P. 1432-1440. doi: 10.3382/ps.2011-01919
59. Kawakami S., Bungo T., Ohgushi A., Ando R., Shimojo M., Masuda Y., Denbow D.M., Furuse M. Brain-derived mast cells could mediate histamine-induced inhibition of food intake in neonatal chicks. //Brain Res. 2000. Feb 28. Vol. 857. nr 1-2. P. 313-316. doi: 10.1016/s0006-8993(99)02466-x
60. Klain G., Johnson B.C. Metabolism of labeled aminoethanol, glycine, and arginine in the chick. // J. Biol. Chem. 1962. Vol. 237. P. 123-126.
61. Li P., Wu G. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. //Amino Acids. 2020 Vol. 52. nr 4. P. 523-542. doi: 10.1007/s00726-020-02833-4
62. Li X., Zheng S., Wu G. Nutrition and metabolism of glutamate and glutamine in fish. // Amino Acids. 2020. Vol. 52. nr 5. P. 671-691. doi: 10.1007/s00726-020-02851-2
63. Li P., Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. // Amino Acids. 2018. Vol. 50. nr 1. P. 29-38. doi: 10.1007/s00726-017-2490-6
64. Li W., Yang J., Lyu Q., Wu G., Lin S., Yang Q., Hu J. Taurine prevents cardiomyocyte apoptosis by inhibiting the calpain-1/cytochrome c pathway during RVH in broilers. // Amino Acids. 2020. Vol. 52. nr 3. P. 453-463. doi: 10.1007/s00726-020-02824-5
65. Li P., Kim S.W., Nakagawa K., Zhou H.J., Wu G. Dietary supplementation with L-glutamine and AminoGut™ enhances protein synthesis in skeletal muscle of growing broiler chickens. // FASEB J. 2010. Vol. 24. P. 740-751.
66. Liu S.Y., Selle P.H., Raubenheimer D., Cadogan D.J., Simpson S.J., Cowieson A.J. An assessment of the influence of macronutrients on growth performance and nutrient utilisation in broiler chickens by nutritional geometry. // Br. J. Nutr. 2016. Vol. 116. nr 12. P. 2129-2138. doi: 10.1017/S0007114516004190
67. Li X., Rezaei R., Li P., Wu G. Composition of amino acids in feed ingredients for animal diets. // Amino Acids. 2011. Vol. 40. nr 4. P. 1159-1168. doi: 10.1007/s00726-010-0740-y
68. Lee C.Y., Song A.A., Loh T.C., Abdul Rahim R. Effects of lysine and methionine in a low crude protein diet on the growth performance and gene expression of immunity genes in broilers. // Poult. Sci. 2020. Vol. 99. nr 6. P. 2916-2925. doi: 10.1016/j.psj.2020.03.013
69. Latour Y.L., Gobert A.P., Wilson K.T. The role of polyamines in the regulation of macrophage polarization and function. //Amino Acids. 2020. Vol. 52. nr 2. P. 151-160. doi: 10.1007/s00726-019-02719-0
70. Mousa M.A., Asman A.S., Ali R.M.J., Sayed R.K.A., Majrashi K.A., Fakiha K.G., Alhotan R.A., Selim S. impacts of dietary lysine and crude protein on performance, hepatic and renal functions, biochemical parameters, and histomorphology of small intestine, liver, and kidney in broiler chickens. // Vet. Sci. 2023. Jan 29. Vol. 10. nr 2. P. 1-19. doi: 10.3390/vetsci10020098
71. McNeill S.H., Belk K.E., Campbell W.W., Gifford C.L. Coming to terms: meat’s role in a healthful diet. //Anim. Front. 2017. Vol. 7. P. 34-42.
72. Mund M.D., Riaz M., Mirza M.A., Rahman Z.U. et al. . Effect of dietary tryptophan supplementation on growth performance, immune response and anti-oxidant status of broiler chickens from 7 to 21 days. // Vet. Med. Sci. 2020. Vol. 6. nr 1. P. 48-53. doi: 10.1002/vms3.195
73. Matthews J.C. Amino acid and peptide transport system. In: Farm animal metabolism and nutrition. // JPF. 2000. Wallingford: D’Mello CAPI Publ. P. 3-23. doi:10.1079/9780851993782.0003
74. Nakashima K., Yakabe Y., Ishida A., Katsumata M. Effects of orally administered glycine on myofibrillar proteolysis and expression of proteolytic-related genes of skeletal muscle in chicks. // Amino Acids. 2008. Vol. 35. nr 2. P. 451-456. doi: 10.1007/s00726-007-0573-5
75. Nakashima K., Yakabe Y., Ishida A. et al., Suppression of myofibrillar proteolysis in chick skeletal muscles by alpha-ketoisocaproate. // Amino Acids. 2007. Vol. 33. nr 3. P. 499-503. doi: 10.1007/s00726-006-0404-0
76. Ncho C.M., Gupta V., Choi Y.H. Effects of dietary glutamine supplementation on heat-induced oxidative stress in broiler chickens: a systematic review and meta-analysis. // Antioxidants (Basel). 2023. Vol. 12. nr 3:570. P. 1-18. doi: 10.3390/antiox12030570
77. Osmanyan A.K., Ghazi Harsini S., Mahdavi R., Fisinin V.I., Arkhipova A.L., Glazko T.T., Kovalchuk S.N., Kosovsky G.Y. Intestinal amino acid and peptide transporters in broiler are modulated by dietary amino acids and protein. // Amino Acids. 2018. Vol. 50. nr 2. P. 353-357. doi: 10.1007/s00726-017-2510-6
78. Oso A.O., Williams G.A., Oluwatosin O.O. et al. Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. // Livest. Sci. 2017. Vol. 198. P. 58-64.
79. Ospina-Rojas I.C., Murakami A.E., Oliveira C.A., Guerra A.F. Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. // Poult. Sci. 2013. Vol. 92. nr 10. P. 2724-2731. doi: 10.3382/ps.2013-03171
80. Porteous J.W. Glutamate, glutamine, aspartate, asparagine, glucose and ketone-body metabolism in chick intestinal brush-border cells. // Biochem. J. 1980. Vol. 188. P. 619-632.
81. Pirsaraei Z.A., Rahimi A., Deldar H., Sayyadi A.J., Ebrahimi M., Shahneh A.Z., Shivazad M., Tebianian M. Effect of feeding arginine on the growth performance, carcass traits, relative expression of lipogenic genes, and blood parameters of Arian broilers. // Braz. J. Poul.t Sci. 2017. Vol. 20. P. 363-370. doi.org/10.6084/m9.figshare.7483160
82. Refaie A.M., Abdallah A.G., Khosht A.R., Magied H.A.A., Habib H.H., Waly A.H., Shaban S.A.M. Response of broiler chicks to low-protein-L-valine supplemented diets formulated based on digestible amino acids. // J. Anim. Poult. Prod. 2017. Vol. 8. P. 13-19.
83. Reeds P.J., Burrin D.G., Stoll B., Jahoor F. Intestinal glutamate metabolism. J. Nutr. 2000. Vol. 130. P. 978-982.
84. Réhault-Godbert S., Guyot N., Nys Y. the golden egg: nutritional value, bioactivities, and emerging benefits for human health. // Nutrients. 2019. Vol. 11. nr 3. P. 684-693. doi: 10.3390/nu11030684
85. San Gabriel A., Uneyama H. Amino acid sensing in the gastrointestinal tract. //Amino Acids. 2013. Vol. 45. nr 3. P. 451-461. doi: 10.1007/s00726-012-1371-2
86. Sestili P., Martinelli C., Colombo E., Barbieri E., Potenza L., Sartini S., Fimognari C. Creatine as an antioxidant. // Amino Acids. 2011. Vol. 40. P. 1385-1396.
87. Sasse C.E., Baker D.H. Modification of the Illinois reference standard amino acid mixture. // Poult. Sci. 1973. Vol. 52. P. 1970-1972.
88. Smith D.D., Campbell J.W. Subcellular location of chicken brain glutamine synthetase and comparison with chicken liver mitochondrial glutamine synthetase. // J. Biol. Chem. 1983. Vol. 258. P. 12265-12268.
89. Tinker D.A., Brosnan J.T., Herzberg G.R. Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). // Biochem. J. 1986. Vol. 240. P. 829-836.
90. Tomonaga S., Tachibana T., Takagi T., Saito E.S., Zhang R., Denbow D.M., Furuse M. Effect of central administration of carnosine and its constituents on behaviors in chicks. // Brain Res. Bull. 2004. Vol. 63. nr 1. P.75-82. doi: 10.1016/j.brainresbull.2004.01.002
91. Tomonaga S., Kaji Y., Tachibana T., Denbow D.M., Furuse M. Oral administration of b-alanine modifies carnosine concentrations in the muscles and brains of chickens. // Anim. Sci. J. 2005. Vol. 76. P. 249-254.
92. Tomonaga S., Furuse M. Nutritional characteristics and functions of d-amino acids in the chicken. // J. Poult. Sci. 2020. Jan 25. Vol. 57. nr 1. P. 18-27. doi: 10.2141/jpsa.0190062
93. Tran P.V., Chowdhury V.S., Furuse M. Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. // Amino Acids. 2019. Vol. 51. nr 8. P. 1129-1152. doi: 10.1007/s00726-019-02762-x.
94. Tran P.V., Chowdhury V.S., Do P.H., Bahry M.A., Yang H., Furuse M. L-Ornithine is a potential acute satiety signal in the brain of neonatal chicks. // Physiol. Behav. 2016. Vol. 155. P. 141-148. doi: 10.1016/j.physbeh.2015.12.007
95. Tan J.Z., Guo Y.M., Applegate T.J., Du E.C., Zhao X. Dietary L-arginine modulates immunosuppression in broilers inoculated with an intermediate strain of infectious bursa disease virus. // J. Sci. Food Agric. 2015. Vol. 95. nr 1. P. 126-135. doi: 10.1002/jsfa.6692
96. Tan B.E., Yin Y.L., Liu Z.Q., Li X.G., Xu H.J., Kong X.F., Huang R.L., Tang W.J., Shinzato I., Smith S.B., Wu G. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. // Amino Acids. 2009. Vol. 37. P. 169-175.
97. Usiello A., Di Fiore M.M., De Rosa A., Falvo S., Errico F., Santillo A., Nuzzo T., Chieffi Baccari G. New evidence on the role of d-aspartate metabolism in regulating brain and endocrine system physiology: from preclinical observations to clinical applications. // Int. J. Mol. Sci. 2020. Vol. 21. nr 22:8718. P. 1-18. doi: 10.3390/ijms21228718
98. Watford M., Hod Y., Chiao Y.B., Utter M.F., Hanson R.W. The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. // J. Biol. Chem. 1981. Vol. 256. P. 10023-10027.
99. Watford M., Wu G. Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. //Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005. Vol. 140. nr 4. P. 607-614. doi: 10.1016/j.cbpc.2004.12.009
100. Wang W., Wu Z., Dai Z., Yang Y., Wang J., Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. // Amino Acids. 2013. Vol. 45. nr 3. P. 463-77. doi: 10.1007/s00726-013-1493-1
101. Wang W., Dai Z., Wu Z., Lin G., Jia S., Hu S., Dahanayaka S., Wu G. Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. //Amino Acids. 2014. Vol. 46. nr 8. P. 2037-2045. doi: 10.1007/s00726-014-1758-3
102. Wen C., Wu P., Chen Y., Wang T., Zhou Y. Methionine improves the performance and breast muscle growth of broilers with lower hatching weight by altering the expression of genes associated with the insulin-like growth factor-I signalling pathway. // Br. J. Nutr. 2014. Jan 28. Vol. 111. nr 2. P. 201-206. doi: 10.1017/S0007114513002419
103. Winiarska-Mieczan A., Kwiecień M., Kwiatkowska K., Baranowska-Wójcik E., Szwajgier D., Zaricka E. Fatty acid profile, antioxidative status and dietary value of the breast muscle of broiler chickens receiving glycine-Zn chelates. // Anim. Prod. Sci. 2020. Vol. 60. P.1095-1102. doi.org/10.1071/AN19305
104. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. // Amino Acids. 2020. Vol. 52. nr 3. P. 329-360. doi: 10.1007/s00726-020-02823-6
105. Wu G. Principles of Animal Nutrition (1st ed.). Boca Raton, Florida: CRC Press, 2018. 800 p. doi.org/10.1201/9781315120065
106. Wu G. Amino acids: biochemistry and nutrition. Boca Raton, Florida: CRC Press, 2022. 816 p. doi.org/10.1201/9781003092742
107. Wu G. Functional amino acids in nutrition and health. // Amino Acids. 2013. Vol. 45. nr 3. P. 407-411. doi: 10.1007/s00726-013-1500-6
108. Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. //,J. Anim. Sci. Biotechn. 2014. Vol. 5. P. 34-46. doi.org/10.1186/2049-1891-5-34
109. Wu G., Chung-Bok M., Vincent N., Kowalski T.J., Choi Y.H., Watford M. Distribution of phosphate-activated glutaminase isozymes in the chicken: absence from liver but presence of high activity in pectoralis muscle. // Comp. Biochem. Physiol. B. 1998. Vol. 120. P. 285-290.
110. Wu G. Amino acids: metabolism, functions, and nutrition. // Amino Acids. 2009. Vol. 37. nr 1. P. 1-17. doi: 10.1007/s00726-009-0269-0
111. Wu G., Flynn N.E., Yan W., Barstow D.G. Glutamine metabolism in chick enterocytes: absence of pyrroline-5-carboxylate synthase and citrulline synthesis. // Biochem. J. 1995. Vol. 306. P. 717-721.
112. Wu G., Thompson J.R., Baracos V.E. Glutamine metabolism in skeletal muscle from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). // Biochem. J. 1991. Vol. 274. P. 769-774
113. Wu G., Thompson J.R. Ketone bodies inhibit leucine degradation in chick skeletal muscle. // Int. J. Biochem. 1987. Vol. 19. P. 937-943.
114. Wu G., Thompson J.R. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. // Biochem J. 1990. Vol. 265. P. 593-598.
115. Wu G., Thompson J.R., Sedgwick G., Drury M. Formation of alanine and glutamine in chick (Gallus domesticus) skeletal muscle. // Comp. Biochem. Physiol. 1989. Vol. 93B. P. 609-613.
116. Wu G. Amino acids in nutrition, health, and disease. // Front. Biosci. 2021. Vol. 26. P. 1386-1392. doi: 10.52586/5032
117. Wu Z., Hou Y., Dai Z., Hu C.A., Wu G. Metabolism, nutrition, and redox signaling of hydroxyproline. // Antioxid Redox Signal. 2019. Vol. 30. nr 4. P. 674-682. doi: 10.1089/ars.2017.7338
118. Wu G., Bazer F.W., Burghardt R.C., Johnson G.A., Kim S.W., Knabe D.A., Li P., Li X.L., McKnight J.R., Satterfield M.C., Spencer T.E. Proline and hydroxyproline metabolism: implications for animal and human nutrition. // Amino Acids. 2011. Vol. 40. P. 1053-1063. doi.org/10.1007/s00726-010-0715-z
119. Xiao M., Mi Y., Liu L., Lv C., Zeng W., Zhang C., Li J. Taurine regulates mucosal barrier function to alleviate lipopolysaccharide-induced duodenal inflammation in chicken. // Amino Acids. 2018. Vol. 50. nr 11. P. 1637-1646. doi: 10.1007/s00726-018-2631-6
120. Yazdanabadi F.I., Moghaddam G.H., Nematollahi A., Daghighkia H., Sarir H. Effect of arginine supplementation on growth performance, lipid profile, and inflammatory responses of broiler chicks challenged with coccidiosis. // Prev. Vet. Med. 2020. Vol. 180:105031. doi: 10.1016/j.prevetmed.2020.105031
121. Yang Z., Liao S. F. Physiological effects of dietary amino acids on gut health and functions of swine. // Front. Vet. Sci. 2019. Vol. 6. P. 169-178. doi: 10.3389/fvets.2019.00169
122. Yasugi S., Mizuno T. Developmental changes in acid proteases of the avian proventriculus. // J. Exp. Zool. 1981. Vol. 216. P. 331-335.
123. Yoshida J., Shigemura A., Ogino Y., Denbow D.M., Furuse M. Two receptors are involved in the central functions of kynurenic acid under an acute stress in neonatal chicks. // Neurosci. 2013. Sep 17. Vol. 248. P. 194-200. doi: 10.1016/j.neuroscience.2013.06.005
124. Zarghi H., Golian A., Nikbakhtzade M. Effect of dietary digestible lysine level on growth performance, blood metabolites and meat quality of broilers 23-38 days of age. // J. Anim. Physiol. Anim. Nutr. (Berl). 2020. Vol. 104. nr 1. P. 156-165. doi: 10.1111/jpn.13214
125. Zhai W., Peebles E.D., Wang X., Gerard P.D., Olanrewaju H.A., Mercier Y. Effects of dietary lysine and methionine supplementation on Ross 708 male broilers from 21 to 42 d of age (III): serum metabolites, hormones, and their relationship with growth performance. // J. Appl. Poult. Res. 2016. Vol. 25. P. 223-231. doi.org/10.3382/japr/pfw003
126. Zhang S., Saremi B., Gilbert E.R., Wong E.A. Physiological and biochemical aspects of methionine isomers and a methionine analogue in broilers. // Poult. Sci. 2017. Vol. 96. nr 2. P. 425-439. doi: 10.3382/ps/pew253