Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства – ВИЖ имени академика Л.К. Эрнста»
1Еримбетов К.Т., 2Обвинцева О.В., 3Михайлов В.В.
1НИТИЦ превентивной информационной медицины; 2ВНИИ физиологии, биохимии и питания животных – филиал ФИЦ животноводства – ВИЖ им. Л.К. Эрнста, Боровск Калужской области; 3Тамбовский государственный университет имени Г.Р. Державина
Одним из приёмов повышения эффективности выращивания свиней является применение кормовых добавок незаменимых аминокислот, при этом снижается выделение азота в окружающую среду с фекалиями и мочой. Цель обзора – систематизация сведений о лизине, как первой лимитирующей аминокислоты, имеющей особое значение в системах регуляции метаболизма. Основные разделы: метаболические функции лизина (генерация непептидных молекул, катаболизм лизина как источник энергии, метаболические нарушения, связанные с дефектами транспорта и катаболизма лизина; влияние лизина на профиль аминокислот плазмы крови); физиологические функции лизина (влияние лизина на секрецию и действие гормонов; эффекты дефицита и непереносимости лизина). участие производных лизина в эпигенетической регуляции экспрессии генов. Врождённый дефект белка-переносчика лизина может привести к непереносимости лизин-содержащих белков. Производные лизина участвуют в системах регуляции экспрессии генов. В целом, метаболические и молекулярные механизмы, лежащие в основе эффектов положительного влияния кормовой добавки лизина на приросты массы мыщц у свиней, недостаточно выяснены и заслуживают дальнейшего исследования для получения научных данных, необходимых для повышения эффективности производственных технологий
1. Лысиков Ю.А. Аминокислоты в питании человека. // Экспериментальная и клиническая гастроэнторология. 2012. № 2. С. 88-105.
2. Обвинцева О.В., Еримбетов К.Т., Михайлов В.В. Потребность поросят в аминокислотах с разветвлёнными боковыми цепями в зависимости от состава рациона. // Проблемы биологии продуктивных животных. 2020. № 3. С. 89-97. DOI: 10.25687/1996-6733.prodanimbiol.2020.3.89-97
3. Попова Т.С., Шестапалов А.Е., Тамазашвили Т.Ш., Лейдерман И.Н. Нутритивная поддержка больных в критических состояниях. Москва, издат. дом М-Вести, 2002. 320 с.
4. Северьянова Л.А., Долгинцев М.Е. Cовременные представления о действии аминокислоты L-лизина на нервную и иммунную регуляторные системы. // Курский научно-практический вестник «Человек и его здоровье». 2007. № 2. С. 67-79.
5. Andersson A.C., Henningsson S. On the biogenesis of diamines and polyamines in the pregnant rat. //Acta Endocrinol. 1981. Vol. 98. P. 456-463. Battezzati A., Riso P. Amino acids: fuel, building blocks for proteins, and signals. // Nutrition. 2002. Vol. 18. P. 773-774. DOI: 10.1016/S0899-9007(02)00898-5
6. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. // Cell. Res. 2011. Vol. 21. P. 381-395. DOI: 10.1038/cr.2011.22
7. Barker D.J. The origins of the developmental origins theory. // J. Intern. Med. 2007, Vol. 261. P. 412-417.
8. Becker L.L., Scholtz E.E., DeRouchey J.M., Tokach M.D., Woodworth J.C., Goodband R.D., De Jong J.A., Wu F., Berg K.M., Ward J.P., Neill C.R., Gebhardt J.T. Effects of standardized ileal digestible lysine on growth performance and economic return in duroc-sired finishing pigs. // Transl. Anim. Sci. 2022. Vol. 6. nr 2. P. 1-12. DOI: 10.1093/tas/txac069
9. Bidner B.S., Ellis M., Witte D.P., Carr S.N., McKeith F.K. Influence of dietary lysine level, pre-slaughter fasting, and rendement napole genotype on fresh pork quality. // Meat Sci. 2004. Vol. 68. P. 53-60. DOI: 10.1016/j.meatsci.2003.10.018
10. Braude R.R., Fulford R.J., Mitchell K.G., Myres A.W. Performance and blood plasma amino acid and urea concentrations in growing pigs given diets of cereals and groundnut meal and supplemented with graded amounts of L-lysine. // Liv. Prod. Sci. 1974. Vol. 1. P. 383-400. DOI: 10.1016/0301-6226(74)90068-2
11. Broquist H.P. Lysine-pipecolic acid metabolic relationships in microbes and mammals. // Annu. Rev. Nutr. 1991. Vol. 11. P. 435-448. DOI: 10.1146/annurev.nu.11.070191.002251
12. Benevenga N.J., Blemings K.P. Unique aspects of lysine nutrition and metabolism. // J. Nutr. 2007. Vol. 137. P. 1610-1615.
13. Breier B.H. Regulation of protein and energy metabolism by the somatotropic axis. // Domest. Anim. Endocrinol. 1999. Vol. 17. P. 209-218. DOI: 10.1016/S0739-7240(99)00038-7
14. Carter B.W., Chicoine L.G., Nelin L.D. L-lysine decreases nitric oxide production and increases vascular resistance in lungs isolated from lipopolysaccharide-treated neonatal pigs. // Pediatr. Res. 2004. Vol. 55. P. 979-987. DOI: 10.1203/01.pdr.0000127722.55965.b3
15. Chang Y.F. Pipecolic acid pathway: the major lysine metabolic route in the rat brain. // Biochem. Biophys. Res. Commun. 1976. Vol. 69. P. 174-180. DOI: 10.1016/S0006-291X(76)80288-4
16. Chu S.H., Hegsted D.M. Adaptive response of lysine and threonine degrading enzymes in adult rats. // J. Nutr. 1976. Vol. 106. P. 1089-1096.
17. Chen C., Sander J.E., Dale N.M. The effect of dietary lysine deficiency on the immune response to Newcastle disease vaccination in chickens. // Avian Dis. 2003. Vol. 47. P. 1346-1351. DOI: 10.1637/7008
18. Сherepanov G.G., Kharitonov E.L., Ostrenko K.S. In silico predictions on the productive life span and theory of its developmental origin in dairy cows. // Animals (Basel). 2022. Vol. 12. nr 6. P. 684-698. https://doi.org/3390/ani12060684
19. Corpas E., Blackman M.R., Roberson R., Scholfield D., Harman S.M. Oral arginine-lysine does not increase growth hormone or insulin-like growth factor-I in old men. // J. Geront. 1993. Vol. 48. P. 128-133. DOI: 10.1093/geronj/48.4.M128
20. Civitelli R., Villareal D.T., Agnusdei D., Nardi P., Avioli L.V., Gennari C. Dietary L-lysine and calcium metabolism in humans. // Nutrition. 1992. Vol. 8. P. 400-405.
21. Dancis J., Hutzler J., Cox R.P. Familial hyperlysinemia: enzyme studies, diagnostic methods, comments on terminology. // Am. J. Hum. Genet. 1979. Vol. 31. P. 290-299.
22. Datta D., Bhinge A., Chandran V. Lysine: Is it worth more? // Cytotechnology. 2001. Vol. 36. P. 3-32. DOI: 10.1023/A:1014097121364
23. Edmonds M.S., Baker D.H. Failure of excess dietary lysine to antagonize arginine in young pigs. // J. Nutr. 1987. Vol. 117. P. 1396-1401.
24. Eyre D.R., Paz M.A., Gallop P.M. Cross-linking in collagen and elastin. // Annu Rev. Biochem. 1984. Vol. 53. P. 717-748. DOI: 10.1146/annurev.bi.53.070184.003441
25. Floyd J.C., Fajans S.S., Conn J.W., Knopf R.F., Rull J. Stimulation of insulin secretion by amino acids. // J. Clin. Invest. 1966. Vol. 45. P. 1487-1502. DOI: 10.1172/JCI105456
26. Ferrari R., Merli E., Cicchitelli G., Mele D., Fucili A., Ceconi C. Therapeutic effects of L-carnitine and propionyl-L-carnitine on cardiovascular diseases: a review. // Ann. New York Acad. Sci. 2004. Vol. 1033. P. 79-91. DOI: 10.1196/annals.1320.007
27. Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine. // J. Am. Coll. Nutr. 1997. Vol. 16. P. 7-21. DOI: 10.1080/07315724.1997.10718644
28. Fuller M.F., Reeds P.J., Cadenhead A., Seve B., Preston T. Effects of the amount and quality of dietary protein on nitrogen metabolism and protein turnover of pigs. // Br. J. Nutr. 1987. Vol. 58. P. 287-300. DOI: 10.1079/BJN19870096
29. Gatica M., Allende C.C., Antonelli M., Allende J.E. Polylysine-containing peptides, including the carboxyl-terminal segment of the human c-Ki-ras 2 protein, affect the activity of some key membrane enzymes. // Proc. Natl. Acad. Sci. 1987. Vol. 84. P. 324-328. DOI: 10.1073/pnas.84.2.324
30. Gatrell S.K., Berg L.E., Barnard J.T., Grimmett J.G., Barnes K.M., Blemings K.P. Tissue distribution of indices of lysine catabolism in growing swine. // J. Anim. Sci. 2013. Vol. 91. P. 238-247. . DOI: 10.2527/jas.2011-5070
31. Gelse K., Poschl E., Aigner T. Collagens - structure, function, and biosynthesis. //Adv. Drug Deliv. Rev. 2003. Vol. 55. P. 1531-1546. DOI:10.1016/j.addr.2003.08.002
32. Goldberg A.D., Allis C.D., Bernstein E. Epigenetics: a landscape takes shape. // Cell. 2007. Vol. 128. P. 635-638. DOI: 10.1016/j.cell.2007.02.006
33. Gillman M.W. Developmental origins of health and disease. // New Engl. J. Med. 2005. Vol. 353. P. 1848-1850.
34. Gluckman P.D, Hanson M.A., Beedle A.S. Non-genomic transgenerational inheritance of disease risk. // Bioessays. 2007. Vol. 29. P. 145-154.
35. Gluckman P.D., Hanson M.A., Cooper C., Thornburg K.L. Effect of in utero and early-life conditions on adult health and disease. // New Engl. J. Med. 2008. Vol. 359. P. 61-73.
36. Griffith R.S., Walsh D.E., Myrmel K.H., Thompson R.W., Behforooz A. Success of L-lysine therapy in frequently recurrent herpes simplex infection, Treatment and prophylaxis. // Dermatologica. 1987. Vol. 175. P. 183-190. DOI: 10.1159/000248823
37. Griffith R.S., DeLong D.C., Nelson J.D. Relation of arginine-lysine antagonism to herpes simplex growth in tissue culture. // Chemotherapy. 1981. Vol. 27. P. 209-213. DOI: 10.1159/000237979
38. Guay F., Trottier N.L., Donovan S.M. Biochemical and morphological developments are partially impaired in intestinal mucosa from growing pigs fed reduced-protein diets supplemented with crystalline amino acids. // J. Anim. Sci. 2006. Vol. 84. P. 1749-1760. DOI: 10.2527/jas.2005-558
39. Hallen A., Jamie J., Cooper A.J.L. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. // Amino Acids. 2013. Vol. 45. P. 1249-1272. DOI: 10.1007/s00726-013-1590-1.
40. Halper J., Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. // Adv. Exp. Med. Biol. 2014. Vol. 802. P. 31-47. DOI: 1007/978-94-007-7893-1_3
41. Hasan M.S., Crenshaw M.A., Liao S.F. Dietary lysine affects amino acid metabolism and growth performance, which may not involve the GH/IGF-1 axis, in young growing pigs1. // J. Anim. Sci. 2020. Vol. 98. nr 1. P. 1-7. DOI: 10.1093/jas/skaa004
42. Hausmann E. Cofactor requirements for the enzymatic hydroxylation of lysine in a polypeptide precursor of collagen. // Biochim. Biophys. Acta. 1967. Vol. 133. P. 591-593. DOI: 10.1016/0005-2795(67)90566-1
43. He L., Yang H., Hou Y., Li T., Fang J., Zhou X., Yin Y., Wu L., Nyachoti M., Wu G. Effects of dietary L-lysine intake on the intestinal mucosa and expression of CAT genes in weaned piglets. // Amino Acids. 2013. Vol. 45. P. 383-391. DOI: 10.1007/s00726-013-1514-0
44. Hewitt D.J., Dekkers J.C.M., Antonick T., Gheisari A., Rakhshandeh A.R., Rakhshandeh A. Effects of divergent selection for residual feed intake on nitrogen metabolism and lysine utilization in growing pigs. // J. Anim. Sci. 2020. Vol. 98. nr 5. P. 152-161. DOI: 10.1093/jas/skaa152
45. Ho E., Dashwood R.H. Dietary manipulation of histone structure and function. // J. Nutrigenet Nutrigenomics. 2010. Vol. 3. P. 231-238. DOI: 10.1159/000324359.
46. Hoerr R.A., Matthews D.E., Bier D.M., Young V.R. Effects of protein restriction and acute refeeding on leucine and lysine kinetics in young men. // Am. J. Physiol. Endocr. Metab. 1993. Vol. 264. P. 567-575.
47. Hong J., Kim H.-S., Do S., Kim H.-J., Kim S.-W., Jang S.-K., Kim Y.-Y. Effects of lysine cell mass supplementation as a substitute for l-lysine•hcl on growth performance, diarrhea incidence, and blood profiles in weaning pigs. // Animals. 2021. Vol. 11. P. 2084-2092. DOI: 0.3390/ani11072092
48. Hu X., Huo B., Yang J., Wang K., Huang L., Che L., Feng B., Lin Y., Xu S., Zhuo Y., Wu C., Wu D., Fang Z. Effects of dietary lysine levels on growth performance, nutrient digestibility, serum metabolites, and meat quality of baqing pigs. // Animals (Basel). 2022. Vol. 12. nr 15. P. 1884-1903. DOI: 10.3390/ani12151884
49. Hung J., Sellappan S. Epigenetic modifications regulate gene expression. // Path. Magaz. 2008. Vol. 8. P. 1-5.
50. Isidori A., Lo Monaco A., Cappa M. A study of growth hormone release in man after oral administration of amino acids. // Curr. Med. Opin. 1981. Vol. 7. P. 475-481. DOI: 10.1185/03007998109114287
51. Jarowski C.I., Pytelewski R.. Utility of fasting essential amino acid plasma levels in formulation of nutritionally adequate diets III: Lowering of rat serum cholesterol levels by lysine supplementation. // J. Pharm. Sci. 1975. Vol. 64. P. 690-691. DOI: 10.1002/jps.2600640426
52. Katsumata M., Kawakami S., Kaji Y., Takada R., Dauncey M.J. Differential regulation of porcine hepatic IGF-I mRNA expression and plasma IGF-I concentration by a low lysine diet. // J. Nutr. 2002. Vol. 132. P. 688-692.
53. Kim S.W., Chen H., Parnsen W. Regulatory Role of amino acids in pigs fed on protein-restricted diets. // Curr. Protein Pept. Sci. 2019. Vol. 20(2). P. 132-138. DOI: 10.2174/1389203719666180517100746.
54. Lafarga T., Hayes M. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. // Meat Sci. 2014. Vol. 98. P. 227-239. DOI: 10.1016/j.meatsci.2014.05.036
55. Leibholz J., Love R.J., Mollah Y., Carter R.R. The absorption of dietary L-lysine and extruded L-lysine in pigs. // Anim. Feed Sci. Tech. 1986. Vol. 15. P. 141-148. DOI: 10.1016/0377-8401(86)90021-0.
56. Li P., Yin Y.L., Li D., Kim S.W., Wu G. Amino acids and immune function. // Br. J. Nutr. 2007. Vol. 98. P. 237-252. DOI: 10.1017/S000711450769936X
57. Liao S.F., Wang T., Regmi N. Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. // Springerplus. 2015. Vol. 4. P. 147-159. DOI: 10.1186/s40064-015-0927-5
58. Liaudet L., Gnaegi A., Rosselet A., Markert M., Boulat O., Perret C., Feihl F. Effect of L-lysine on nitric oxide overproduction in endotoxic shock. // Br. J. Pharm. 1997. Vol. 122. P. 742-748. . DOI: 10.1038/sj.bjp.0701419
59. Liu Z.Q., Long W., Fryburg D.A., Barrett E.J. The regulation of body and skeletal muscle protein metabolism by hormones and amino acids. // J. Nutr. 2006. Vol. 136. P. 212-217.
60. Matthews D.E. Proteins and amino acids. // Ross A.C., Caballero B., Cousins R.J., Tucker K.L., Ziegler T.R., eds). // Modern nutrition in health and disease. Lippincott, Williams and Wilkins, Publ., 2014. P. 3-35.
61. Matthews D.E. Review of Lysine Metabolism with a Focus on Humans. // J. Nutr. 2020. Vol. 150 (Suppl 1). P. 2548-2555. DOI: 10.1093/jn/nxaa224
62. Meredith C.N., Wen Z.M., Bier D.M., Matthews D.E., Young V.R. Lysine kinetics at graded lysine intakes in young men. // Am. J. Clin. Nutr. 1986. Vol. 43. P. 787-794.
63. Morales A., García H., Arce N., Cota M., Zijlstra R.T., Araiza B.A., Cervantes M. Effect of L-lysine on expression of selected genes, serum concentration of amino acids, muscle growth and performance of growing pigs. // J. Anim. Physiol. Anim. Nutr. (Berlin). 2015. Vol. 99. nr 4. P. 701-709. DOI: 10.1111/jpn.12267
64. Millward D.J. Amino acid scoring patterns for protein quality assessment. // Br. J. Nutr. 2012. Vol. 108. P. 31-43.
65. Nielsen S., Chou C.L., Marples D., Christensen E.I., Kishore B.K., Knepper M.A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. // Proc. Natl. Acad. Sci. 1995. Vol. 92. P. 1013-1017. DOI: 10.1073/pnas.92.4.1013
66. Otto E.R., Yokoyama M., Hengemuehle S., von Bermuth R.D., van Kempen T., Trottier N.L. Ammonia, volatile fatty acids, phenolics, and odor offensiveness in manure from growing pigs fed diets reduced in protein concentration. // J. Anim. Sci. 2003. Vol. 81. P. 1754-1763
67. Palma-Granados P., Lara L., Seiquer I., Aguilera J.F., Nieto R. Genotype and dietary lysine deficiency affect carcass and muscle amino acid composition of pigs growing from 10 to 25 kg body weight. // J. Anim. Physiol. Anim. Nutr. (Berl). 2019. Vol. 103. nr 6. P. 1857-1865. DOI: 10.1111/ jpn.13176
68. Papes F., Surpili M.J., Langone F., Trigo J.R., Arruda P. The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system. // FEBS Lett. 2001. Vol. 488. P. 34-38. DOI: 10.1016/S0014-5793(00)02401-7
69. Papes F., Kemper E.L., Cord-Neto G., Langone F., Arruda P. Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. // Biochem J. 1999. Vol. 344. P. 555-563. DOI: 10.1042/bj3440555
70. Patocka J., Kuehn G.D. Natural polyamines and their biological consequence in mammals. // Acta Medica (Hradec Kralove). 2000. Vol. 43. P.119-124.
71. Preis J., Morgan H., Whitelaw E. The marks, mechanisms and memory of epigenetic states in mammals. // Biochem. J. 2001. Vol. 356. P. 1-10.
72. Purslow P.P., Archile-Contreras A.C., Cha M.C. Manipulating meat tenderness by increasing the turnover of intramuscular connective tissue. // J. Anim. Sci. 2012. Vol. 90. P. 950-959. DOI: 10.2527/jas.2011-4448
73. Raisz L.G., Bergmann P.J., Dominguez J.H., Price M.A. Enhancement of parathyroid hormone-stimulated bone resorption by poly-L-lysine. // Endocrinology. 1979. Vol. 105. P. 152-155. DOI: 10.1210/endo-105-1-152
74. Rajantie J., Simell O., Rapola J., Perheentupa J. Lysinuric protein intolerance: A two-year trial of dietary supplementation therapy with citrulline and lysine. // J. Pediatr. 1980. Vol. 97. P. 927-932. DOI: 10.1016/S0022-3476(80)80422-7
75. Rakyan V., Preis J., Morgan H., Whitelaw E. The marks, mechanisms and memory of epigenetic states in mammals. // Biochem. J. 2001. Vol, 356. P. 1-10.
76. Regmi N., Wang T., Crenshaw M.A., Rude B.J., Wu G., Liao S.F. Effects of dietary lysine levels on plasma free amino acid profile in late-stage finishing pigs. // Springerplus. 2016. Vol. 5. nr 1. P. 888-897. DOI: 10.1186/s40064-016-2463-3
77. Ren J.B., Zhao G.Y., Li Y.X., Meng Q.X. Influence of dietary lysine level on whole-body protein turnover, plasma IGF-I, GH and insulin concentration in growing pigs. // Livest. Sci. 2007. Vol. 110. P. 126-132. DOI: 10.1016/j.livsci.2006.10.009
78. Rezaei R., Wang W.W., Wu Z.L., Dai Z.L., Wang J.J., Wu G. Biochemical and physiological bases for utilization of dietary amino acids by young pigs. // J. Anim. Sci. Biotechnol. 2013. Vol. 4. P. 1891-1897. DOI: 10.1186/2049-1891-4-7
79. Roy N., Lapierre H., Bernier J.F. Whole-body protein metabolism and plasma profiles of amino acids and hormones in growing barrows fed diets adequate or deficient in lysine. // Can. J. Anim. Sci. 2000. Vol. 80. P. 585-595. DOI: 10.4141/A98-057
80. Royall R.Q., Goodband R.D., Tokach M.D., DeRouchey J.M., Woodworth J.C., Gebhardt J.T. Effects of standardized ileal digestible lysine level on growth performance and economic return for 18 to 128 kg Duroc-sired pigs. // Transl. Anim. Sci. 2022. Vol. 6. nr 4. P. 1-13. DOI: 10.1093/tas/txac103
81. Salter D.N., Montgomery A.I., Hudson A., Quelch D.B., Elliott R.J. Lysine requirements and whole-body protein turnover in growing pigs. // Br. J. Nutr. 1990. Vol. 63. P. 503-513. DOI: 10.1079/BJN19900137
82. Saudubray J.M., Rabier D. Biomarkers identified in inborn errors for lysine, arginine, and ornithine. // J. Nutr. 2007. Vol. 137. P. 1669-1672.
83. Shelton N.W., Tokach M.D., Dritz S.S., Goodband R.D., Nelssen J.L., DeRouchey J.M. Effects of increasing dietary standardized ileal digestible lysine for gilts grown in a commercial finishing environment. // J. Anim. Sci. 2011. Vol. 89. P. 3587-3595. DOI: 10.2527/jas.2010-3030
84. Shikata N., Maki Y., Noguchi Y., Mori M., Hanai T., Takahashi M., Okamoto M. Multi-layered network structure of amino acid (AA) metabolism characterized by each essential AA-deficient condition. // Amino Acids. 2007. Vol. 33. P. 113-121. DOI: 10.1007/s00726-006-0412-0
85. Soto J.A., Tokach M.D., Dritz S.S., Woodworth J.C., DeRouchey J.M., Goodband R.D., Wu F. Optimal dietary standardized ileal digestible lysine and crude protein concentration for growth and carcass performance in finishing pigs weighing greater than 100 kg1,2. // J. Anim. Sci. 2019. Vol. 97. nr 4. P. 1701-1711. DOI: 10.1093/jas/skz052
86. Stadnik J., Dolatowski Z.J. Biogenic amines in meat and fermented meat products. // Acta Sci. Pol. Technol. Aliment. 2010. Vol. 9. P. 251-263.
87. Steiber A., Kerner J., Hoppel C.L. Carnitine: a nutritional, biosynthetic, and functional perspective. // Mol. Aspects Med. 2004. Vol. 25. P. 455-473. DOI: 10.1016/j.mam.2004.06.006
88. Stoll B., Henry J., Reeds P.J., Yu H., Jahoor F., Burrin D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. // J. Nutr. 1998. Vol. 126. P. 606-614.
89. Swanson J.M.; Wadhwa P.D. (Eds). Genes, environments and human development, health and disease (GEHDHD) meeting. // Nat. Acad. Sci. USA. Arnold & Mabel Beckman Center, 2006. Sept. 7-8.
90. Takenaka A., Oki N., Takahashi S.I., Noguchi T. Dietary restriction of single essential amino acids reduces plasma insulin-like growth factor-I (IGF-I) but does not affect plasma IGF-binding protein-1 in rats. // J. Nutr. 2000. Vol. 130. P. 2910-2914.
91. Thier S.O., Segal S., Fox M., Blair A., Rosenberg L.E. Cystinuria: defective intestinal transport of dibasic amino acids and cystine. // J. Clin. Invest. 1965. Vol. 44. P. 442-448. DOI: 10.1172/JCI105157
92. Til H.P., Falke H.E., Prinsen M.K., Willems M.I. Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. // Food Chem. Toxicol. 1997. Vol. 35. P. 337-348. DOI: 10.1016/S0278-6915(97)00121-X
93. .Torrents D., Mykkanen J., Pineda M., Feliubadalo L., Estevez R., de Cid R., Sanjurjo P., Zorzano A., Nunes V., Huoponen K., Reinikainen A., Simell O., Savontaus M.L., Aula P., Palacin M. Identification of SLC7A7, encoding y + LAT-1, as the lysinuric protein intolerance gene. // Nat. Genet. 1999. Vol. 21. P. 293-296. DOI: 10.1038/6809
94. Tsubuku S., Mochizuki M., Mawatari K., Smriga M., Kimura T. Thirteen-week oral toxicity study of L-lysine hydrochloride in rats. // Int. J. Toxicol. 2004. Vol. 23. P. 113-118. DOI: 10.1080/10915810490444415
95. Uhe A.M., Collier G.R., O’Dea K. A comparison of the effects of beef, chicken and fish protein on satiety and amino acid profiles in lean male subjects. // J. Nutr. 1992. Vol. 122. P. 467-472.
96. Van Goudoever J.B., Stoll B., Henry J.F., Burrin D.G., Reeds P.J. Adaptive regulation of intestinal lysine metabolism. // Proc. Natl. Acad. Sci. 2000. Vol. 97. P. 11620-11625. DOI: 10.1073/pnas.200371497
97. Van den Steen P., Rudd P.M., Dwek R.A., Opdenakker G. Concepts and principles of O-Linked glycosylation. // Crit. Rev. Biochem. Mol. Biol. 1998. Vol. 33. P. 151-208. DOI: 10.1080/10409239891204198
98. Wang W., Wu Z., Dai Z., Yang Y., Wang J., Wu G. Glycine metabolism in animals and humans: Implications for nutrition and health. // Amino Acids. 2013. Vol. 45. P. 463-477. DOI: 10.1007/s00726-013-1493-1
99. Wang W., Dai Z., Wu Z., Lin G., Jia S., Hu S., Dahanayaka S., Wu G. Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. // Amino Acids. 2014. Vol. 46. P. 2037–2045. DOI: 10.1007/s00726-014-1758-3
100. Wang Y., Zhou J., Wang G., Cai S., Zeng X., Qiao S. Advances in low-protein diets for swine. // J. Anim. Sci. Biotechn. 2018. Vol. 9. No 60. P. 1-14. DOI: 10.1186/s40104-018-0276-7
101. Washington D.C. (Ed.). Proteins and amino acids // NRC. Nutrient requirements of swine. National Academie Press. 2012. P. 15-44.
102. Wilson R.W., Wilson C.M., Gates S.C., Higgins J.V. Alpha-ketoadipic aciduria: a description of a new metabolic error in lysine-tryptophan degradation. // Pediatr. Res. 1975. Vol. 9. P. 522-526. DOI: 10.1203/00006450-197506000-00002
103. Witte D.P., Ellis M., McKeith F.K., Wilson E.R. Effect of dietary lysine level and environmental temperature during the finishing phase on the intramuscular fat content of pork. // J. Anim. Sci. 2000. Vol. 78. P. 1272-1276.
104. Wu G. Functional amino acids in nutrition and health. // Amino Acids. 2013. Vol. 45. P. 407-411. DOI: 10.1007/s00726-013-1500-6
105. Wu G., Morris S.M., Arginine metabolism: nitric oxide and beyond. // Biochem. J. 1998. Vol. 336. P. 1-17. DOI: 10.1042/bj3360001
106. Wu G. Recent advances in swine amino acid nutrition. // J. Anim. Sci. Biotechnol. 2010 (a). Vol. 1. P. 49-61.
107. Wu G. Functional amino acids in growth, reproduction and health. // Adv. Nutr. 2010 (b). Vol. 1. P. 31-37. DOI: 10.3945/an.110.1008
108. Wu G., Bazer F.W., Johnson G.A., Hou Y. Arginine nutrition and metabolism in growing, gestating, and lactating swine. // J. Anim. Sci. 2018. Vol. 96. nr 12. P. 5035-5051. DOI: 10.1093/jas/sky377
109. Wu G., Li P. The "ideal protein" concept is not ideal in animal nutrition. // Exp. Biol. Med. (Maywood). 2022. Vol. 247. nr 13. P. 1191-1201. DOI: 10.1177/15353702221082658
110. Yang H., Pettigrew J.E., Johnston L.J., Shurson G.C., Wheaton J.E., White M.E., Koketsu Y., Sower A.F., Rathmacher J.A. Effects of dietary lysine intake during lactation on blood metabolites, hormones, and reproductive performance in primiparous sows. // J. Anim. Sci. 2000. Vol. 78. P. 1001-1009.
111. Yen J.T., Kerr B.J., Easter R.A., Parkhurst A.M. Difference in rates of net portal absorption between crystalline and protein-bound lysine and threonine in growing pigs fed once daily. // J. Anim. Sci. 2004. Vol. 82. P. 1079-1090.
112. Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S.M., He F., Qin L., Chin J., Yang P., Chen X., Lei Q., Xiong Y., Guan K.L. Regulation of cellular metabolism by protein lysine acetylation. // Science. 2010. Vol. 327. P. 1000-1004. DOI: 10.1126/science.1179689
113. Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S.M., He F., Qin L., Chin J., Yang P., Chen X., Lei Q., Xiong Y., Guan K.L. Regulation of cellular metabolism by protein lysine acetylation. // Science. 2010. Vol. 327. P. 1000-1004. DOI: 10.1126/science.1179689
114. Zimmerman R.A., Scott H.M. Interrelationship of plasma amino acid levels and weight gain in the chick as influenced by suboptimal and superoptimal dietary concentrations of single amino acids. // J. Nutr. 1965. Vol. 87. P. 13-18.
115. Zull J.E., Smith L.M., Chuang J., Jentoft J. Deletion of lysine 13 alters the structure and function of parathyroid hormone. // Mol. Cell Endocrinol. 1987. Vol. 51. P. 267-271. DOI: 10.1016/0303-7207(87)90037-2