Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства – ВИЖ имени академика Л.К. Эрнста»
Фотопериод является экологическим фактором, позволяющим светочувствительным организмам синхронизировать циркадные (суточные) и цирканнуальные (сезонные) ритмы с биохимической, физиологической и поведенческой активностью. Выраженность нейроэндокринных механизмов трансляции в биологические ритмы изменений продолжительности светового зависит от ночной продолжительности секреции мелатонина в эпифизе. Основные разделы обзора: ключевые факторы фотонейроэндокринной регуляции репродуктивного статуса у животных (роль фотопериодизма в сезонном размножении животных; мелатонин и его рецепторы; рars tuberalis как сайт контроля сезонного размножения; танициты как регуляторы сезонных циклов нейроэндокринных функций; роль гипоталамического кисспептина в регуляции сезонного размножения); фотопериодические изменения состояния жировых депо и энергетического метаболизма у млекопитающих; особенности световой регуляции репродуктивных процессов у птиц, млекопитающих и рыб. Основным участком действия мелатонина является pars tuberalis (PT), область стебля гипофиза, примыкающая к гипоталамусу. Под действием мелатонина с участием цАМФ и компонентов молекулярных часов индуцируется «сезонный» запуск синтеза и секреции тиреотропного гормона (ТТГ). К компонентам системы, ответственной за периодические изменения в сезонной физиологии животных, также относят танициты – специализированные эпендимные клетки в медиобазальной области гипоталамуса. В таницитах выявлены существенные ежегодные изменения в экспрессии генов, связанных с транспортом и метаболизмом ТТГ в гипоталамусе. Гипофизарный ТТГ регулирует экспрессию гонадотропинов (ЛГ и ФСГ) в гипофизе с участием dio-2-экспрессирующих таницитов, гипоталамического кисспептина (КП) и гонадотропин-рилизинг-гормона (ГнРГ). Снижение функции нейронов КП, наблюдаемое в период анэструса, можно корректировать введением КП, вызывающего овуляцию у сезонно неактивных самок. Последовательные изменения в локальной доступности ТТГ в гипоталамусе регулируют годовые циклы потребления, хранения и расходования энергии у сезонно размножающихся видов. Это проявляется в сезонных изменениях потребления корма, состава жировой ткани и состояния организма (спячка/активность). В целом, учёт фактора сезонности в процессах размножения является важнейшей составляющей в стратегиях поддержания выживаемости потомства и сохранения видов животных.
1. Ainani H., El Bousmaki N., Poirel V.J., Achaaban M.R. et al. The dromedary camel displays annual variation in hypothalamic kisspeptin and Arg-Pheamide-related peptide-3 according to sex, season, and breeding activity. J. Comp. Neurol. 2020, 1: 32-47. DOI: 10.1002/cne.24736
2. Anisimov V.N. The solar clock of aging. Acta Gerontol. 1995, 45: 137-150.
3. Barrell G.K., Ridgway M.J., Wellby M., Pereira A. et al. Expression of regulatory neuropeptides in the hypothalamus of red deer (Cervus elaphus) reveals anomalous relationships in the seasonal control of appetite and reproduction. Gen Comp. Endocrinol. 2016, 229. P.1-7. DOI: 10.1016/j.ygcen.2016.02.020
4. Baso A., Bello U.M., Sulaiman M.H., Gosomji I.J. et al. Photoperiodic-dependent histomorphological changes in the excurrent duct system of helmeted guinea fowl subjected to short day (8L:16D), long-day (16L:8D) light/dark cycles and exogenous melatonin. Vet. Anim. Sci. 2023, 19: 100282. DOI: 10.1016/j.vas.2022.100282
5. Benford H., Bolborea M., Pollatzek E., Lossow K. et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017, 65: 773-789. DOI: 10.1002/glia.23125
6. Billings H.J., Viguie C., Karsch F.L. Temporal requirements of thyroid hormones for seasonal changes in LH secretion. Endocrinology. 2002, 143: 2618-2625. DOI: 10.1210/endo.143.7.8924
7. Bolat D., Kurum A., Canpolat S. Morphology and quantification of sheep pineal glands at pre-pubertal, pubertal and post-pubertal periods. Anat. Histol. Embryol. 2018, 47(4): 338-345. DOI: 10.1111/ahe.12359
8. Bolborea M., Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320(6): 994-1003. DOI: 10.1152/ajpregu.00296.2020
9. Bronson F.H. Mammalian reproductive strategies: genes, photoperiod and latitude. Reprod. Nutr. Dev. 1988, 28: 335-347. DOI:10.1051/rnd:19880301
10. Chen Y.C., Sheen J.M., Tiao M.M., Tain Y.L., Huang L.T. Roles of melatonin in fetal programming in compromised pregnancies. Int. J. Mol. Sci. 2013, 14: 5380-5401. DOI: 10.3390/ijms14035380
11. Clarke I.J., Smith J.T., Caraty A., Goodman R.L., Lehman M.N. Kisspeptin and seasonality in sheep. Peptides. 2009. 30(1):154-163. DOI: 10.1016/j.peptides.2008.08.022
12. Clarke I.J., Arbabi L. New concepts of the central control of reproduction, integrating influence of stress, metabolic state, and season. Domest. Anim. Endocrinol. 2016, 56: 165-79. DOI: 10.1016/j.domaniend.2016.03.001
13. Coomans C.P., Ramkisoensing A., Meijer J.H. The suprachiasmatic nuclei as a seasonal clock. Front. Neuroendocrinol. 2015, 37(4): 29-42. DOI: 10.1016/j.yfrne.2014.11.002
14. Cox K.H., Takahashi J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 2019, 63: 93-102. DOI: 10.1530/JME-19-0153
15. Cyr D.G., Eales J.G. Interrelationships between thyroidal and reproductive endocrine systems in fish. Rev. Fish. Biol. Fish. 1996, 6(2): 165-200. doi: 10.1007/BF00182342
16. Dardente H., Lomet D., Robert V., Decourt C. et al. Seasonal breeding in mammals: from basic science to applications and back. Theriogenology. 2016, 86: 324-332. DOI: 10.1016/j.theriogenology.2016.04.045
17. Dardente H., Simonneaux V. GnRH and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and RFRP-3. J. Neuroendocrinol. 2022, 13: 124. DOI: 10.1111/jne.13124 f
18. Dhillo W.S., Murphy K.G., Bloom S.R. The neuroendocrine physiology of kisspeptin in the human. Rev. Endocrinol. Metab. Disord. 2007, 8: 41-46. DOI: 10.1007/ s11154‑007‑9029‑1
19. Diaz Lopez B., Diaz Rodriguez E., Urquijio C., Fernandez Alvarez C. Melatonin influences on the neuroendocrine– reproductive axis. Ann. NY Acad. Sci. 2005, 1057: 337-364. DOI: 10.1196/annals.1356.026
20. Do M.T.H. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron. 2019, 104(2): 205-226. DOI: 10.1016/j.neuron.2019.07.016
21. Dubocovich M.L., Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005, 27: 101-110. DOI: 10.1385/ENDO:27:2:101
22. Ebling F.J. Hypothalamic control of seasonal changes in food intake and body weight. Front Neuroendocrinol. 2015, 37: 97-107. DOI: 10.1016/j.yfrne.2014.10.003.
23. Ebling F.J., Lewis J.E. Tanycytes and hypothalamic control of energy metabolism. Glia. 2018, 66(6): 1176-1184. DOI: 10.1002/glia.23303
24. Fekete C. Pars tuberalis as a key regulator of neuroendocrine functions. Nat. Rev. Endocrinol. 2022, 18: 332. DOI: 10.1038/s41574-022-00667-6
25. Franssen D., Tena‑Sempere M. The kisspeptin receptor: A key G‑protein‑coupled receptor in the control of the reproductive axis. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32: 107-123. DOI: 10.1016/j.beem. 2018.01.005
26. Frayling C., Britton R., Dale N. ATP-mediated glucosensing by hypothalamic tanycytes. J. Physiol. 2011, 589(9): 2275-2286. DOI: 10.1113/jphysiol.2010.202051
27. Funes S., Hedric J. A., Vassileva G., Markowitz L. et al. The KiSS‑1 receptor GPR54 is essentional for the development of the murine reproductive system. Biochem. Biophys. Res. Commun. 2003, 4: 1357-1363. DOI: 10.1016/j.bbrc.2003.11.066
28. Gao Y., Zhao S., Zhang Y., Zhang Q. Melatonin receptors: a key mediator in animal reproduction. Vet. Sci. 2022, 9(7): 309. DOI: 10.3390/vetsci9070309
29. Gonzalez-Arto M., Vicente-Carrillo A., Martinez-Pastor F., Fernandez-Alegre E. et al. Melatonin receptors MT1 and MT2 are expressed in spermatozoa from several seasonal and nonseasonal breeder species. Theriogenology. 2016, 86(8): 1958-1968. DOI: 10.1016/j.theriogenology.2016.06.016
30. Gorman M.R. Temporal organization of pineal melatonin signaling in mammals. Mol. Cell Endocr. 2020, 503: 110687. DOI: 10.1016/j.mce.2019.110687
31. Guh Y.J., Tamai T.K., Yoshimura T. The underlying mechanisms of vertebrate seasonal reproduction. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95(7): 343-357. DOI: 10.2183/pjab.95
32. Hanon E.A., Lincoln G.A., Fustin J.-M., Dardente H. et al. Ancestral TSH mechanism signals summer in a photoperiodic mammals. Curr. Biol. 2008, 18: 1147-1152. DOI: 10.1016/j.cub.2008.06.076.
33. Helfer G., Barrett P., Morgan P.J. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J. Neuroendocrinol. 2019, 31: e12680. DOI: 10.1111/jne.12680
34. Husse J., Eichele G., Oster H. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body’s circadian clock network with external time. Bioessays. 2015, 37(10): 1119-1128. DOI: 10.1002/bies.201500026
35. Hut R.A., Dardente H., Riede S.J. Seasonal timing: how does a hibernator know when to stop hibernating. Curr. Biol. 2014, 24: 602-605. DOI: 10.1016/j.cub.2014.05.061
36. Johnston J.D., Tournier B.B., Andersson H., Masson-Pévet M. et al. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology. 2006, 147: 959-965. DOI: 10.1210/en.2005-1100
37. Kannangara H., Cullen L., Miyashita S., Korkmaz F. et al. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann. N Y Acad. Sci. 2023, 1525(1): 61-69. DOI: 10.1111/nyas.15009
38. Klosen P., Lapmanee S., Schuster C., Guardiola B., Hicks D., Pevet P., Felder-Schmittbuhl M.P. MT1 and MT2 melatonin receptors are expressed in nonoverlapping neuronal populations. J Pineal Res. 2019, 67(1): e12575. DOI: 10.1111/jpi.12575
39. Kolbe I., Brehm N., Oster H. Interplay of central and peripheral circadian clocks in energy metabolism regulation. J. Neuroendocrinol. 2019, 31(5): e12659. DOI: 10.1111/jne.12659
40. Korf H. W. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen. Comp. Endocrinol. 2018, 258: 236-243. DOI: 10.1016/j.ygcen.2017.05.011
41. Korf H.W., Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. Handb. Clin. Neurol. 2021, 180: 227-251. DOI: 10.1016/B978-0-12-820107-7.00015-X
42. Lazutkaite G., Solda A., Lossow K., Meyerhof W., Dale N. Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol. Metab. 2017, 6(11): 1480-1492. DOI: 10.1016/j.molmet.2017.08.015
43. Lee B.H., Bussi I.L., de la Iglesia H.O., Hague C., Koh D.S., Hille B. Two indoleamines are secreted from rat pineal gland at night and act on melatonin receptors but are not night hormones. J. Pineal. Res. 2020, 68(2): e12622. DOI: 10.1111/jpi.12622
44. Lee J.H., Miele M.E., Hicks D.J., Phillips K.K. et al. R. KiSS-
45. Legan S.J., Karsch F.J. Importance of retinal photoreceptors to the photoperiodic control of seasonal breeding in the ewe. Biol. Reprod. 1983, 29: 316-325.
46. Lewis J.E., Ebling F.J.P. Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front. Neurol. 2017, 8. 79. DOI: 10.3389/fneur.2017.00079
47. Lieth H. Phenology and seasonality modeling. New York. Springer-Verlag, 1974. DOI:10.1007/978-3-642-51863-8
48. Lopez-Canul M., Min S. H., Posa L., De Gregorio D., Bedini A., Spadoni G., Gobbi G., Comai S. Melatonin MT1 and MT2 receptors exhibit distinct effects in the modulation of body temperature across the light/dark cycle. Int. J. Mol. Sci. 2019, 20(10): 24-52. DOI: 10.3390/ijms20102452
49. Manchester L. C., Coto-Montes A., Boga J. A., Andersen L. P. et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal. Res. 2015, 59(4): 403-419. DOI: 10.1111/jpi.12267
50. Michel S., Kervezee L. One seasonal clock fits all? J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2023, 10. DOI: 10.1007/s00359-023-01680-4
51. Murphy B. A., O’Brien C., Elliott J. A. Red light at night permits the nocturnal rise of melatonin production in horses. Vet. J. 2019, 252. e 105360. DOI: 10.1016/j.tvjl.2019.105360
52. Myung J., Pauls S.D. Encoding seasonal information in a two-oscillator model of the multi-oscillator circadian clock. Eur. J. Neurosci. 2017, 48(8): 2718-2727. DOI: 10.1111/ejn.13697
53. Nakane Y., Ikegami K., Iigo M., Ono H., Takeda K., Takahashi D. The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat. Commun. 2013,4. 2108. DOI: 10.1038/ncomms3108
54. Nakane Y., Ikegami K., Ono H., Yamamoto N. et al. A novel mammalian neural tissue opsin (Opsin5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci. USA. 2010, 107: 15264-15268. DOI: 10.1073/pnas.1006393107
55. Nakane Y., Yoshimura T. Photoperiodic regulation of reproduction in vertebrates. Annu. Rev. Anim. Biosci. 2019, 7: 173-194. DOI: 10.1146/annurev-animal-020518-115216
56. Nakao N., Ono H., Yamamura T., Yasuo S. Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature. 2008, 452(7185): 317-322. DOI: 10.1038/nature06738
57. Nakayama T., Tanikawa M., Okushi Y., Itoh T. et al. A transcriptional program underlying the circannual rhythms of gonadal development in medaka. Proc. Natl. Acad. Sci. U S A. 2023, 120(52): e2313514120. DOI: 10.1073/pnas.2313514120
58. Navarro-Masip E., Caron A., Mulero M., Arola L., Aragonès G. Photoperiodic remodeling of adiposity and energy metabolism in non-human mammals. Int. J. Mol. Sci. 2023, 24(2): 1008. DOI: 10.3390/ijms24021008
59. Nicholls T.J., Goldsmith A.R., Dawson A. Photorefractoriness in birds and comparison with mammals. Physiol. Rev. 1988, 68: 133-176. DOI: 10.1152/physrev.1988.68.1.133
60. Nishiwaki-Ohkawa T., Yoshimura T. Molecular basis for regulating seasonal reproduction in vertebrates. J. Endocrinol. 2016, 229(3): 117-127. DOI: 10.1530/JOE-16-0066
61. Niu Y.J., Zhou W., Nie Z.W, Shin K.T., Cui X.S. Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos. J. Pineal. Res. 2020, 68(2): e12627. DOI: 10.1111/jpi.12627
62. Ohtaki T., Shintani Y., Honda S., Matsumoto H. et al. Metastasis suppressor gene KiSS‑1 encodes peptide ligand of a G‑protein‑coupled receptor. Nature. 2001, 411: 613-617. DOI: 10.1038/35079135
63. Pang Y.W., Jiang X.L., Zhao S.J., Huang Z.Q., Zhu H.B. Beneficial role of melatonin in protecting mammalian gametes and embryos from oxidative damage . J. Integr. Agr. 2018,17. nr 10. P.2320-2335. DOI: 10.1016/52095-3119(18)61942-2
64. Perez J.H. Light receptors in the avian brain and seasonal reproduction. J. Exp. Zool. A Ecol. Integr. Physiol. 2022, 337(9-10): 985-993. DOI: 10.1002/jez.2652.
65. Poissenot K., Moussu C., Chesneau D., Ramadier E., Abi Khalil R., Chorfa A., Chemineau P., Michelin Y., Saez F., Drevet J., Benoit E., Lattard V., Pinot A., Dardente H., Keller M. Field study reveals morphological and neuroendocrine correlates of seasonal breeding in female water voles, Arvicola terrestris. Gen. Comp. Endocrinol. 2021, 311: 113853. DOI: 10.1016/j.ygcen.2021.113853
66. Prendergast B.J. MT1 melatonin receptors mediate somatic, behavioral, and reproductive neuroendocrine responses to photoperiod and melatonin in Siberian hamsters (Phodopus sungorus). Endocrinology. 2010, 2:714-721. DOI: 10.1210/en.2009-0710
67. Rasri-Klosen K., Simonneaux V., Klosen P. Differential response patterns of kisspeptin and RFamide-related peptide to photoperiod and sex steroid feedback in the Djungarian hamster (Phodopus sungorus). J. Neuroendocrinol. 2017, 9: e12529. DOI: 10.1111/jne.12529
68. Reiter R.J. The mammalian pineal gland: structure and function. Am. J. Anat. 1981,162: 287-313. DOi: 10.1002/aja.1001620402
69. Reiter R.J. The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1980, 1: 109-131. DOI: 10.1210/edrv-1-2-109
70. Reiter R.J., Rosales-Corral S.,·Tan D. X.,·Jou M. J.,·Galano A.,·Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol. Life Sci. 2017, 74(21): 3863–3881. DOI: 10.1007/s00018-017-2609-7
71. Reiter R.J., Sharma R. Central and peripheral actions of melatonin on reproduction in seasonal and continuous breeding mammals. Gen. Comp. Endocrinol. 2021, 300: 113620. DOI: 10.1016/j.ygcen.2020.113620
72. Reiter R.J.,·Sharma R., Ma Q.,·Rorsales-Corral S.,·de Almeida Chuffa L.G. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol. Life Sci. 2020, 77(13): 2527-2542. DOI: 10.1007/s00018-019-03438-1
73. Reiter R., Tan D.X., Sharma R. Historical perspective and evaluation of the mechanisms by which melatonin mediates seasonal reproduction in mammals. Melatonin Res. 2018, 1(1): 59-77. DOI: 10.32794 /mr112 50004
74. Saenz de Miera C., Beymer M., Routledge K., Krol E., Selman C., Hazlerigg D.G., Simonneaux V. Photoperiodic regulation in a wild-derived mouse strain. J. Exp. Biol. 2020, 223: jeb217687. DOI: 10.1242/jeb.217687
75. Saha S., Singh K.M., Gupta B.B.P. Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: similarities and differences. Gen Comp. Endocrinol. 2019, 279: 27-34. DOI: 10.1016/j.ygcen.2018.07.01
76. Salgado M., García-Robles M.A., Saez J.C. Purinergic signaling in tanycytes and its contribution to nutritional sensing. Purinergic. Signal. 2021, 17(4): 607-618. DOI: 10.1007/s11302-021-09791-w
77. Schmal C. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. J. Comp. Physiol. A Neuroethol. Sens Neural. Behav. Physiol. 2023: Online Sep 2. DOI: 10.1007/s00359-023-01669-z
78. Smith J.T. The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep. Domest Anim Endocrinol. 2012 43(2):75-84. DOI: 10.1016/j.domaniend.2011.11.003
79. Smith J.T., Clay C.M., Caraty A., Clarke I.J. KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology. 2007, 3: 1150-1157.
80. Soto-Heras S., Catala M. G., Roura M., Menéndez-Blanco I. et al. Effects of melatonin on oocyte developmental competence and the role of melatonin receptor
81. Sukhbaatar U., Kanasaki H., Mijiddorj T., Oride A., Miyazaki K. Kisspeptin induces expression of gonadotropin‑releasing hormone receptor in GnRH‑producing GT1‑7 cells over expressing G protein‑coupled receptor 54 . Gen. Comp. Endocrinol. 2013, 194: P.94-101. DOI: 10.1016/j.ygcen.2013.09.002
82. Surbhi X., Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp. Endocrinol. 2015, 220: 13-22. DOI: 10.1016/j.ygcen.2014.06.001
83. Talbi R., Klosen P., Laran-Chich M. P., El Ouezzani S., Simonneaux V. Coordinated seasonal regulation of metabolic and reproductive hypothalamic peptides in the desert jerboa. J. Comp. Neurol. 2016, 18: 3717-3728. DOI: 10.1002/cne.24026
84. Talpur H.S., Chandio I.B., Brohi R.D., Worku T., Rehman Z., Bhattarai D., Ullah F., Yang L. Research progress on the role of melatonin and its receptors in animal reproduction: A comprehensive review. Reprod. Dom. Anim. 2018, 53(4): 831-849. DOI: 10.1111/rda.13188
85. Tan D.X., Manchester L.C., Liu X., Rosales-Corral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal. Res. 2013, 54(2): 127-138. DOI: 10.1111/jpi.12026
86. Tan D.X., Reiter R.J. Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2019, 2(1): 44-66. DOI: 10.32794 /mr112 50011
87. Trevisan C.M., Montagna E., de Oliveira R., Christofolini D.M. et al. Kisspeptin/GPR54 system: what do we know about its role in human reproduction? Cell Physiol. Biochem. 2018, 49: 1259-1276. DOI: 10.1159/000493406
88. Uenoyama Y., Inoue N., Maeda K. I., Tsukamura H. The roles of kisspeptin in the mechanism underlying reproductive functions in mammals. J. Reprod. Dev. 2018, 64: 469-476, DOI: 10.1262/jrd.2018110
89. van der Vinne V., Tachinardi P., Riede S.J., Akkerman J., Scheepe J., Hut R.A. Maximising survival by shifting the daily timing of activity. Ecol. Lett. 2019, 22: 2097-2102. DOI:10.1111/ele.13404
90. van Rosmalen L., Hut R.A. Food and temperature change photoperiodic responses in two vole species: different roles for hypothalamic genes. J. Exp. Biol. 2021, 224: jeb243030. DOI:10.22541/au.164864619.99747074/v1
91. van Rosmalen L., van Dalum J., Hazlerigg D.G, Hut R.A. Gonads or body? Differences in gonadal and somatic photoperiodic growth response in two vole species. J. Exp. Biol. 2020, 223: jeb230987. DOI:10.1242/ jeb.230987
92. Varpe O. Life history adaptations to seasonality. Integr. Comp. Biol. 2017, 57(5): 943-960. DOI: 10.1093/icb/icx123
93. Wang D., Li N., Tian L., Ren F. et al. Dynamic expressions of hypothalamic genes regulate seasonal breeding in a natural rodent population. Mol. Ecol. 2019, 15: 3508-3522. DOI: 10.1111/mec.15161
94. Weaver D.R., Liu C., Reppert S.M. Nature's knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol Endocrinol. 1996, 11: 1478-1487. DOI: 10.1210/mend.10.11.8923472
95. Weaver D.R., Reppert S.M. Melatonin receptors are present in the ferret pars tuberalis and pars distalis, but not in brain. Endocrinology. 1990, 5: 2607-2609. DOI: 10.1210/endo-127-5-2607
96. Xie Q., Kang Y., Zhang C., Xie Y. et al. The role of kisspeptin in the control of the hypothalamic-pituitary-gonadal axis and reproduction. Front. Endocrinol. 2022, 13: 925206. DOI: 10.3389/fendo.2022.925206
97. Yamamura T., Hirunagi K., Ebihara S. Seasonal morphological changes in the neuro-glial interaction between gonadotropinreleasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology. 2004, 145: 4264-4267. DOI: 10.1210/en.2004–0366
98. Yasuo S., Yoshimura T., Ebihara S., Korf H.W. Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J. Neurosci. 2009, 29: 2885-2889. DOI: 10.1523/JNEUROSCI.0145-09.2009
99. Yoshimura T. Neuroendocrine mechanism of seasonal reproduction in birds and mammals. Anim. Sci. J. 2010, 81(4): 403-410. DOI: 10.1111/j.1740-0929.2010.00777.x
100. Yoshimura T. Thyroid hormone and seasonal regulation of reproduction. Front. Neuroendocrinol. 2013, 34(3): 157-166. DOI: 10.1016/j.yfrne.2013.04.002
101. Yu K., Deng S.L., Sun T.C., Li Y.Y., Liu Y.X. Melatonin regulates the synthesis of steroid hormones on male reproduction: a review. Molecules. 2018, 23(2): 447. DOI: 10.3390/molecules23020447