Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства – ВИЖ имени академика Л.К. Эрнста»
Использование промышленных технологий в животноводстве сопровождается повышением риска распространения и обострения инфекционных заболеваний животных дойного стада, снижением устойчивости к неблагоприятным факторам производственной среды. Цель данной работы – систематизация новейших данных по физиологическим аспектам формирования иммунного статуса и уровня резистентности к воздействию патогенов у крупного рогатого скота. Основные разделы: врожденный иммунитет; адаптивный (приобретённый, специфический) иммунитет; защитные функции слизистых оболочек; системные иммунные реакции; факторы иммунопатологий скота; иммунная система и кишечный микробиом; иммунная система и питание животных; иммунная функция при стельности и ранних отёлах; иммунная защита молочной железы (вымени); пассивная иммунная защита новорожденных телят; существующие вакцины и их эффективность; антимикробная и вспомогательная терапия крупного рогатого скота. Недостаточность имеющихся знаний в области регуляции иммунной функции у КРС и дефицит набора инструментов для иммунологических исследований препятствуют достижению прогресса по улучшению состояния здоровья коров и жизнеспособности молодняка. Крайне важно достигнуть прогресса в разработке новых вакцин и оптимизации их в ходе полевых испытаний. Необходима концентрация внимания на получение скота с более высокой жизнеспособностью, продуктивным долголетием и адаптивным иммунитетом.
1. Abbas A.T., El-Kafrawy S.A., Sohrab S.S., Azhar E. IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Hum. Vac. Immunother. 2019. 15: 264-275. DOI: 10.1080/21645515.2018.1514224
2. Abuelo A., Cullens F., Hanes A., Brester J.L. Impact of 2 versus 1 colostrum meals on failure of transfer of passive immunity, pre-weaning morbidity and mortality, and performance of dairy calves in a large dairy herd. Animals (Basel). 2021. 11(3): 782. DOI:10.3390/ani11030782
3. Ackermann M.R., Derscheid R., Roth JA. Innate immunology of bovine respiratory disease. Vet. Clin. North Am. Food Anim. Pract. 2010. 26(2): 215-228. DOI: 10.1016/j.cvfa.2010.03.001
4. Aditya S., Humer E., Pourazad P., Khiaosa-Ard R., Huber J., Zebeli Q. Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis. J. Dairy Sci. 2017. 100(2): 363-1377. DOI: 10.3168/jds.2016-11796
5. Al Naib A., Mamo S., O'Gorman G.M., Lonergan P., Swales A., Fair T. Regulation of non-classical major histocompatability complex class I mRNA expression in bovine embryos. J. Repr. Immun. 2011. 91(1-2): 31-40. DOI: 10.1016/j.jri.2011.05.005
6. Arzt J., Baxt B., Grubman M.J., Jackson T., Juleff N., Rhyan J., Rieder E., Waters R., Rodriguez L.L. The pathogenesis of foot-and-mouth disease II: viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus-host interactions. Transb. Emerg. Disease. 2011. 58(4): 305-326. DOI: 10.1111/j.1865-1682.2011.01236.x
7. Ayalew S., Confer A.W., Shrestha B., Wilson A.E., Montelongo M. Proteomic analysis and immunogenicity of Mannheimia haemolytica vesicles. Clin. Vac. Immun. 2013. 20(2): 191-196. DOI: 10.1128/CVI.00622-12
8. Bai M., Liu H., Xu K., Oso A.O., Wu X., Liu G., Tossou M.C., Al-Dhabi N.A., Duraipandiyan V., Xi Q., Yin Y. A review of the immunomodulatory role of dietary tryptophan in livestock and poultry. Amino Acids. 2017. 49(1): 67-74. DOI: 10.1007/s00726-016-2351-8
9. Bannerman D.D. Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J. Anim. Sci. 2009. 87(13): 10-25. DOI: 10.2527/jas.2008-1187
10. Barrington G.M., Parish S.M. Bovine neonatal immunology. Vet. Clin. North Am. Food Anim. Pract. 2001. 17(3): 463-476. DOI: 10.1016/s0749-0720(15)30001-3
11. Belluzzi S., Galeotti M., Eutizi C.M., Castagnetti C. The correlation between mast cells and some inflammatory mediators in the bovine endometrium. Vet. Res. Comm. 2004. 28(1): 165-168. DOI: 10.1023/b:verc.0000045397.58562.6b
12. Benedictus L., Thomas A.J., Jorritsma R., Davies C.J., Koets A.P. Two-way calf to dam major histocompatibility class I compatibility increases risk for retained placenta in cattle. Am. J. Repr. Imm. 2012. 67(3): 224-230. DOI:10.1111/j.1600-0897.2011.01085.x
13. Borghesi L, Milcarek C. Innate versus adaptive immunity: a paradigm past its prime? Canc. Res. 2007. 67(9): 3989-3993. DOI: 10.1158/0008-5472.CAN-07-0182
14. Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am. J. Resp. Crit. Care Medicals. 2011. 183(12): 1595-1604. DOi: 10.1164/rccm.201011-1783OC
15. Вrown W.C., Rice-Ficht A.C., Estes D.M. Bovine type 1 and type 2 responses. Vet. Imm. Immunopath. 1998. 63(1-2): 45-55. DOI:10.1016/s0165-2427(98)00081-6
16. Brulc J.M., Antonopoulos D.A., Miller M.E., Wilson M.K., Yannarell A.C., Dinsdale E.A., Edwards R.E., Frank E.D., Emerson J.B., Wacklin P., Coutinho P.M., Henrissat B., Nelson K.E., White B.A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Nat. Acad. Sci. USA. 2009. 106(6): 1948-1953. DOI: 10.1073/pnas.0806191105
17. Buddle B.M. Vaccination of cattle against Lora I., Gottardo F., Bonfanti L., Stefani A.L., Soranzo E., Dall'Ava B., Capello K., Martini M., Barberio A. Transfer of passive immunity in dairy calves: the effectiveness of providing a supplementary colostrum meal in addition to nursing from the dam. Animal. 2019. 13(11): 2621-2629. DOI: 10.1017/S1751731119000879
18. Butler J.E., Zhao Y., Sinkora M., Wertz N., Kacskovics I. Immunoglobulins, antibody repertoire and B cell development. Dev. Comp. Imm. 2009. 33(3): 321-333. DOI: 10.1016/j.dci.2008.06.015
19. Calder P.C. Editorial: Fat chance to enhance B cell function. J. Leuk. Biol. 2013. 93(4): 457-459. DOI: 10.1189/jlb.1212646
20. Caroprese M., Marzano A., Entrican G., Wattegedera S., Albenzio M., Sevi A. Immune response of cows fed polyunsaturated fatty acids under high ambient temperatures. J. Dairy Sci. 2009. 92(6): 2796-2803. DOI: 10.3168/jds.2008-1809
21. Caroprese M., Albenzio M., Marino R., Santillo A., Sevi A. Dietary glutamine enhances immune responses of dairy cows under high ambient temperature. J. Dairy Sci. 2013. 96(5): 3002-3011. DOI: 10.3168/jds.2012-6306
22. Chamorro M.F., Cernicchiaro N., Haines D.M. Evaluation of the effects of colostrum replacer supplementation of the milk replacer ration on the occurrence of disease, antibiotic therapy, and performance of pre-weaned dairy calves. J. Dairy Sci. 2017. 100(2): 1378-1387. DOI: 10.3168/jds.2016-11652
23. Chase C., Kaushik R.S. Mucosal immune system of cattle: all immune responses begin here. Vet. Clin. North Am. Food Anim. Pract. 2019. 35(3): 431-451. DOI: 10.1016/j.cvfa.2019.08.006
24. Chase C.C. Autogenous vaccines: current use in the field in the U.S. cattle and hog industry. Dev. Biol. (Basel). 2004. 117: 69-71.
25. Chase C. Enteric immunity: happy gut, healthy animal. Vet. Clin. North Am. Food Anim. Pract. 2018. 34(1): 1-18. DOI: 10.1016/j.cvfa.2017.10.006
26. Chen W., Alley M.R., Manktelow B.W., Slack P. Mast cells in the bovine lower respiratory tract: morphology, density and distribution. Brit. Vet. J. 1990. 146(5): 425-436. DOI:10.1016/0007-1935(90)90031-W
27. Connelley T., MacHugh N.D., Burrells A., Morrison W.I. Dissection of the clonal composition of bovine alphabeta T cell responses using T cell receptor Vbeta subfamily-specific PCR and heteroduplex analysis. J. Imm. Meth. 2008. 335(1-2): 28-40. DOI: 10.1016/j.jim.2008.02.015
28. Constable P.D. Treatment of calf diarrhea: antimicrobial and ancillary treatments. Vet. Clin. North Am. Food Anim. Pract. 2009. 25(1): 101-120. DOI:10.1016/j.cvfa.2008.10.012
29. Cunha P., Vern Y.L., Gitton C., Germon P., Foucras G., Rainard P. Expansion, isolation and first characterization of bovine Th17 lymphocytes. Sci. Rep. 2019. 9(1): 16115. DOI: 10.1038/s41598-019-52562-2
30. Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J. Clin. Imm. 2001. 21(5): 303-309. DOI: 10.1023/a:1012241117984
31. De Briyne N., Atkinson J., Pokludová L., Borriello S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014. 175(13): 325. DOI: 10.1136/vr.102462
32. Derakhshani H., De Buck J., Mortier R., Barkema H.W., Krause D.O., Khafipour E. The features of fecal and ileal mucosa-associated microbiota in dairy calves during early infection with Mycobacterium avium subspecies paratuberculosis. Front. Immun. 2016. 7: 426. DOI:10.3389/fmicb.2016.00426
33. Endsley J.J., Roth J.A., Ridpath J., Neill J. Maternal antibody blocks humoral but not T cell responses to BVDV. Biologicals. 2003. 31(42): 123-125. DOI: 10.1016/s1045-1056(03)00027-7
34. Eschbaumer M., Stenfeldt C., Rekant S.I., Pacheco J. M., Hartwig E. J., Smoliga G. R., Kenney M. A., Golde W. T., Rodriguez L. L., Arzt J. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Vet. Res. 2016. 12: 205. DOI: 10.1186/s12917-016-0838-x
35. Ezzat Alnakip M., Quintela-Baluja M., Böhme, K., Fernández-No I., Caamaño-Antelo S., Calo-Mata P., Barros-Velázquez J. The immunology of mammary gland of dairy ruminants between healthy and Brandtzaeg P. potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am. J. Resp. Crit. Care Med. 2011. 183(12): 1595-1604. DOI: 10.1164/rccm.201011-1783OC
36. Ferluga J., Yasmin H., Al-Ahdal M.N., Bhakta S., Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology. 2020. 225(3): 151951. DOI: 10.1016/j.imbio.2020.151951
37. Foster D., Jacob M., Stowe D., Smith G. Exploratory cohort study to determine if dry cow vaccination with a Salmonella Newport bacterin can protect dairy calves against oral Salmonella challenge. J. Vet. Intern. Med. 2019. 33(4): 1796-1806. DOI: 10.1111/jvim.15529
38. Fulton R.W. Bovine respiratory disease research (1983-2009). Anim. Health Res. Rev. 2009. 10(2): 131-139. DOI: 10.1017/S146625230999017X
39. Fulton R.W., Herd H.R., Sorensen N.J., Confer A.W., Ritchey J.W., Ridpath J.F., Burge L.J. Enteric disease in postweaned beef calves associated with bovine coronavirus clade 2. J. Vet. Diagn. Invest. 2015. 27(1): 97-101. DOI: 10.1177/1040638714559026
40. Galyean M.L., Perino L.J., Duff G.C. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 1999. 77(5): 120-1134. DOI: 10.2527/1999.7751120x
41. Gomez D.E., Galvão K.N., Rodriguez-Lecompte J.C., Costa M.C. The cattle microbiota and the immune system: an evolving field. Vet. Clin. North Am. Food Anim. Pract. 2019. 35(3): 485-505. DOI: 10.1016/j.cvfa.2019.08.002
42. Guerra-Maupome M., Vang D.X., McGill J.L. Aerosol vaccination with Bacille Calmette-Guerin induces a trained innate immune phenotype in calves. PLoS One. 2019. 14(2): e0212751. DOI: 10.1371/journal.pone.0212751
43. Gulbe G., Pilmane M., Saulīte V., Doniņa S., Jermolajevs J., Peškova L., Valdovska A. Cells and cytokines in milk of subclinically infected bovine mammary glands after the use of immunomodulatory composition GLP 810. Med. Inflam. 2020. 8238029: 1-5. DOI: 10.1155/2020/8238029
44. Gygax M., Hirni H., Zwahlen R., Lazary S., Blum J.W. Immune functions of veal calves fed low amounts of iron. Zentralb. Veter. A. 1993. 40(5): 345-358. DOI:10.1111/j.1439-0442.1993.tb00638.
45. Haubold S., Kröger-Koch C., Starke A, Tuchscherer A., Tröscher A., Kienberger H., Rychlik M., Bernabucci U., Trevisi E., Hammon H.M. Effects of abomasal infusion of essential fatty acids and conjugated linoleic acid on performance and fatty acid, antioxidative, and inflammatory status in dairy cows. J. Dairy Sci. 2020. 103(1): 972-991. DOI: 10.3168/jds.2019-17135
46. Hemingway R.G. The influences of dietary selenium and vitamin E intakes on milk somatic cell counts and mastitis in cows. Vet. Res. Comm. 1999. 23(8): 481-499. DOI: 10.1023/a:1006362422945
47. Heyland D.K., Dhaliwal R., Day A.G., Muscedere J., Drover J., Suchner U., Cook D. Canadian critical care trials group.reducing deaths due to oxidative stress (REDOXS study): Rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients. Proc. Nutr. Soc. 2006. 65(3): 250-263. DOI: 10.1079/pns2006505
48. Holschbach C.L, Peek S.F. Salmonella in dairy cattle. Vet. Clin. North Am. Food Anim. Pract. 2018. 34(1): 133-154. DOI: 10.1016/j.cvfa.2017.10.005
49. Hungate R. E. The rumen and its microbes. Elsevier, 2013. P.1-147.
50. Ikebuchi R., Konnai S., Shirai T., Sunden Y., Murata S., Onuma M., Ohashi K. Increase of cells expressing PD-L1 in bovine leukemia virus infection and enhancement of anti-viral immune responses in vitro via PD-L1 blockade. Vet. Res. 2011. 42(1): 103. DOI: 10.1186/1297-9716-42-103
51. Inman C.F., Haverson K., Konstantinov S.R., Jones P.H., Harris C., Smidt H., Miller B., Bailey M., Stokes C. Rearing environment affects development of the immune system in neonates. Clin. Exp. Immun. 2010. 160(3): 431-439. DOI: 10.1111/j.1365-2249.2010.04090.x
52. Ismail Z.B. Mastitis vaccines in dairy cows: Recent developments and recommendations of application. Vet. World. 2017. 10(9): 1057-1062. DOI: 10.14202/vetworld.2017.1057-1062
53. Kessler E.C., Bruckmaier R.M., Gross J.J. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J. Anim. Sci. 2020. 98(8): 237. DOI: 10.1093/jas/skaa237
54. Kim D., Yoo S.A., Kim W.U. Gut microbiota in autoimmunity: potential for clinical applications. Arch. Pharm. Res. 2016. 39(11): 1565-1576. DOI: 10.1007/s12272-016-0796-7
55. Ko A.I., Goarant C., Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microb. 2009. 7(10): 736-747. DOI: 10.1038/nrmicro2208
56. Konnai S., Murata S., Ohashi K. Immune exhaustion during chronic infections in cattle. Vet. Med. Sci. 2017. 79(1): 1-5. DOI: 10.1292/jvms.16-0354
57. Korhonen H., Marnila P, Gill H.S. Milk immunoglobulins and complement factors. Brit. J. Nutr. 2000. 84(1): 75-80. DOI: 10.1017/s0007114500002282
58. Küther K., Audigé L., Kube P., Welle M. Bovine mast cells: distribution, density, heterogeneity, and influence of fixation techniques. Cell. Tissue Res. 1998. 293(1): 111-119. DOI: 10.1007/s00441005110359. Kvidera S.K., Horst E.A., Abuajamieh M., Mayorga E.J., Fernandez M.V, Baumgard L.H. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017. 100(3): 2360-2374. DOI: 10.3168/jds.2016-12001
60. Lalsiamthara J., Lee J.H. Development and trial of vaccines against Brucella. J. Vet. Sci. 2017. 18(1): 281-290. DOI: 10.4142/jvs.2017.18.S1.281
61. Langel S.N., Paim F.C., Alhamo M.A., Buckley A., Van Geelen A., Lager K.M., Vlasova A.N., Saif L.J. Stage of gestation at porcine epidemic diarrhea virus infection of pregnant swine impacts maternal immunity and lactogenic immune protection of neonatal suckling piglets. Front. Immun. 2019. 10: 727. DOI: 10.3389/fimmu.2019.00727
62. Leite F.L., Eslabão L.B., Pesch B., Bannantine J.P., Reinhardt T.A., Stabel J.R. ZAP-70, CTLA-4 and proximal T cell receptor signaling in cows infected with Mycobacterium avium subsP. Paratuberculosis. Vet. Imm. Immunopath. 2015. 167(1-2): 15-21. DOI: 10.1016/j.vetimm.2015.06.017
63. Leitner G., Yadlin B., Glickman A., Chaffer M., Saran A. Systemic and local immune response of cows to intramammary infection with Staphylococcus aureus. Res. Vet. Sci. 2000. 69(2): 181-184. DOI: 10.1053/rvsc.2000.0409
64. Lettat A., Benchaar C. Diet-induced alterations in total and metabolically active microbes within the rumen of dairy cows. PLoS One. 2013. 8((4): e60978. DOI: 10.1371/journal.pone.0060978
65. Levings R.L., Roth J.A. Immunity to bovine herpesvirus 1: I. Viral lifecycle and innate immunity. Anim. Health Res. Rev. 2013. 14(1): 88-102. DOI: 10.1017/S1466252313000042
66. Lhermie G., Toutain P.L., El Garch F., Bousquet-Mélou A., Assié S. Implementing precision antimicrobial therapy for the treatment of bovine respiratory disease: current limitations and perspectives. Front. Vet. Sci. 2017. 4: 143. DOI: 10.3389/fvets.2017.00143
67. Liebler-Tenorio E.M., Riedel-Caspari G., Pohlenz J.F. Uptake of colostral leukocytes in the intestinal tract of newborn calves. Vet. Imm. Immunopath. 2002. 85(1-2): 33-40. DOI: 10.1016/s0165-2427(01)00404-4
68. Lora I., Gottardo F., Bonfanti L., Stefani A.L., Soranzo E., Dall'Ava B., Capello K., Martini M., Barberio A. Transfer of passive immunity in dairy calves: the effectiveness of providing a supplementary colostrum meal in addition to nursing from the dam. Animals. 2019. 13(11): 2621-2629. DOI:
69. Maeda Y., Ohtsuka H., Tomioka M., Oikawa M. Effect of progesterone on Th1/Th2/Th17 and regulatory T cell-related genes in peripheral blood mononuclear cells during pregnancy in cows. Vet. Res. Comm. 2013. 37(1): 43-49. DOI: 10.1007/s11259-012-9545-7
70. Malmuthuge N., Li M., Goonewardene L.A, Oba M., Guan L.L. Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune responses and tight junctions in dairy calves during weaning transition. J. Dairy Sci. 2013. 96(5): 3189-3200. DOI: 10.3168/jds.2012-6200
71. Malmuthuge N., Li M., Fries P., Griebel P.J., Guan L.L. Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defence molecules throughout the gastrointestinal tract of dairy calves. Vet. Imm. Immunopath. 2012. 146(1): 18-26. DOI: 10.1016/j.vetimm.2012.01.010
72. Mansouri-Attia N., Oliveira L.J., Forde N., Fahey A.G., Browne J.A., Roche J.F., Sandra O., Reinaud P., Lonergan P., Fair T. Pivotal role for monocytes/macrophages and dendritic cells in maternal immune response to the developing embryo in cattle. Biol. Reprod. 2012. 87(5): P.2123. DOI: 10.1095/biolreprod.112.101121
73. Matthews C., Crispie F., Lewis E., Reid M., O'Toole P.W., Cotter P.D. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes. 2019. 10(2): 115-132. DOI: 10.1080/19490976.2018.1505176
74. Maunsell F.P., Chase C. Mycoplasma bovis: interactions with the immune system and failure to generate an effective immune response. Vet. Clin. North Am. Food Anim. Pract. 2019. 35(3): 471-483. DOI: 10.1016/j.cvfa.2019.08.003
75. McClenahan D.J., Sotos J.P., Czuprynski C.J. Cytokine response of bovine mammary gland epithelial cells to Escherichia coli, coliform culture filtrate, or lipopolysaccharide. Am. J. Vet. Res. 2005. 66(9): 1590-1597. DOI: 10.2460/ajvr.2005.66.1590
76. McDaniel C.J., Cardwell D.M., Moeller R.B., Gray G.C. Humans and cattle: a review of bovine zoonoses. Vect.-Borne Zoon. Dis. 2014. 14(1): 1-19. DOI: 10.1089/vbz.2012.1164
77. McGill J.L., Sacco R.E., The immunology of bovine respiratory disease: recent advancements. Vet. Clin. North Amer. Food Anim. Pract. 2020. 36(2): 333-348. DOI: 10.1016/j.cvfa.2020.03.002
78. Meade K.G. Advances in bovine immunology–new tools and new insights to tackle old foes. Front. Immun. 2015. 6: 71. DOI: 10.3389/fimmu.2015.00071
79. Meglia G.E., Johannisson A., Petersson L., Waller K.P. Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Vet. Scand. 2001. 42(1): 139-150. DOI: 10.1186/1751-0147-42-1
80. Morley P.S., Apley M.D., Besser T.E., Burney D.P., Fedorka-Cray P.J., Papich M.G., Traub-Dargatz J.L., Weese J.S. Antimicrobial drug use in veterinary medicine. J. Vet. Intern. Med. 2005. 19(4): 617-629. https://doi.org/10.1111/j.1939-1676.2005.tb02739.x
81. Moussa I.M., Ali M.S., Hessain A.M., Kabli S.A., Hemeg H.A., Selim S.A. Vaccination against Corynebacterium pseudotuberculosis infections controlling caseous lymphadenitis (CLA) and oedematousskin disease. Saudi J. Biol. Sci. 2016. 23(6): 718-723. DOI: 10.1016/j.sjbs.2016.06.005
82. Nagai K., Otomaru K., Ogawa R., Oishi S., Wataya K., Honkawa Y., Iwamoto Y., Ando T., Hyakutake K., Shirahama H., Habiby G., Kubota C. Effect of combined vaccination for Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni to prevent respiratory diseases in young Japanese Black calves in the field. J. Vet. Med. Sci. 2019. 81(9): 1355-1358. DOI: 10.1292/jvms.19-0256
83. Neefjes J., Jongsma M.L., Paul P., Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Rev. Imm. 2011. 11(12): 823-836. DOI: 10.1038/nri3084
84. Nelson C.D., Reinhardt T.A., Lippolis J.D., Sacco R.E., Nonnecke B.J. Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements. Nutrients. 2012. 4(3): 181-196. DOI: 10.3390/nu4030181
85. Nene V., Svitek N., Toye P., Golde W.T., Barlow J., Harndahl M., Buus S., Nielsen M., Designing bovine T cell vaccines via reverse immunology. Ticks Tick-Borne Diseases. 2012. 3(3): 188-192. DOI: 10.1016/j.ttbdis.2011.12.001
86. Newcomer B.W., Chamorro M.F., Walz P.H. Vaccination of cattle against bovine viral diarrhea virus. Vet. Microb. 2017. 206(4): 78-83. DOI: 10.1016/j.vetmic.2017.04.003
87. Nickell J.S., White B.J. Metaphylactic antimicrobial therapy for bovine respiratory disease in stocker and feedlot cattle. Vet. Clin. North Amer. Food Anim. Pract. 2010. 26(2): 285-301. DOI: 10.1016/j.cvfa.2010.04.006
88. Novák K. Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals. Vet. Imm. Immunopath. 2014. 157(1-2): 1-11. DOI: 10.1016/j.vetimm.2013.10.016
89. Nugent G., Yockney I.J., Whitford J., Aldwell F.E., Buddle B.M. Efficacy of oral BCG vaccination in protecting free-ranging cattle from natural infection by Mycobacterium bovis. Vet. Microb. 2017. 208(4): 181-189. DOI: 10.1016/j.vetmic.2017.07.029
90. O'Gorman G.M., Al Naib A., Ellis S.A., Mamo S., O'Doherty A.M., Lonergan P., Fair T. Regulation of a bovine nonclassical major histocompatibility complex class I gene promoter. Biol. Reprod. 2010. 83(3): 296-306. DOI: 10.1095/biolreprod.109.082560
91. Ohira K., Nakahara A., Konnai S., Okagawa T., Nishimori A., Maekawa N., Ikebuchi R., Kohara J., Murata S., Ohashi K. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Imm. Inflam. Disease. 2016. 4(1): 52-63. DOI: 10.1002/iid3.93
92. Oikonomou G., Teixeira A.G., Foditsch C., Bicalho M.L., Machado V.S., Bicalho R.C. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One. 2013. 8(4): e63157. DOI: 10.1371/journal.pone.0063157
93. Okagawa T., Konnai S., Nishimori A., Ikebuchi R., Mizorogi S., Nagata R., Kawaji S., Tanaka S., Kagawa Y., Murata S., Mori Y., Ohashi K. Bovine immunoinhibitory receptors contribute to suppression of mycobacterium avium subsP.paratuberculosis-specific T-cell responses. Inf. Imm. 2015. 84(1): 77-89. DOI: 10.1128/IAI.01014-15
94. Oliveira L.J., Barreto R.S., Perecin F., Mansouri-Attia N., Pereira F.T., Meirelles F.V.Modulation of maternal immune system during pregnancy in the cow. Reprod. Dom. Anim. 2012. 47(4): 384-393. DOI: 10.1111/j.1439-0531.2012.02102.x
95. Oliveira L.J., McClellan S., Hansen P.J. Differentiation of the endometrial macrophage during pregnancy in the cow. PLoS One. 2010. 5(10): e13213. DOI:10.1371/journal.pone.0013213
96. Ott T.L. Symposium review: Immunological detection of the bovine conceptus during early pregnancy. 10.3168/jds.2018-15668
97. Paibomesai M.A., Sharif S., Karrow N., Mallard B.A. Type I and type II cytokine production of CD4+ T-cells in immune response biased dairy cattle around calving. Vet. Imm. Immunop. 2018. 199: 70-76. DOI: 10.1016/j.vetimm.2018.03.001
98. Palczynski L.J., Bleach E.C.L., Brennan M.L., Robinson P.A. Appropriate dairy calf feeding from birth to weaning: "It's an investment for the future". Animals (Basel). 2020. 10(1): 116. DOI: 10.3390/ani10010116
99. Peterhans E., Jungi T.W., Schweizer M. BVDV and innate immunity. Biologicals. 2003. 31(2): 107-112. DOI: 10.1016/s1045-1056(03)00024-1
100. Ploegaert T.C., Tijhaar E., Lam T.J., Taverne-Thiele A., van der Poel J.J., van Arendonk J.A., Savelkoul H.F., Parmentier H.K. Natural antibodies in bovine milk and blood plasma: variability among cows, repeatability within cows, and relation between milk and plasma titers. Vet. Imm. Immunop. 2011. 144(1-2): 88-94. DOI: 10.1016/j.vetimm.2011.07.008
101. Rainard P. The complement in milk and defense of the bovine mammary gland against infections. Vet. Res. 2003. 34(5): 647-670. DOI: 10.1051/vetres:2003025
102. Rainard P. Tackling mastitis in dairy cows, Nat. Biotech. 2005. 23(4): 430-432. DOI: 10.1038/nbt0405-430
103. Rainard P., Riollet C. Innate immunity of the bovine mammary gland, Vet. Res. 2006. 37(3): 369-400. DOI: 10.1051/vetres:2006007
104. Raphael W., Sordillo L.M. Dietary polyunsaturated fatty acids and inflammation: the role of phospholipid biosynthesis. Intern. J. Mol. Sci. 2013. 14(10): 21167-21188. DOI:10.3390/ijms141021167
105. Richeson J.T., Hughes H.D., Broadway P.R., Carroll J.A. Vaccination management of beef cattle: delayed vaccination and endotoxin stacking. Vet. Clin. North Am. Food Anim. Pract. 2019. 35(3): 575-592. DOI: 10.1016/j.cvfa.2019.07.003
106. Roussey J.A., Steibel J.P., Coussens P.M. Regulatory T cell activity and signs of T cell unresponsiveness in bovine paratuberculosis. Front. Vet. Sci. 2014. 1: 20. DOI: 10.3389/fvets.2014.00020
107. Saif L.J. Bovine respiratory coronavirus. Vet. Clin. North Am. Food Anim. Pract. 2010. 26(2): 349-364. DOI: 10.1016/j.cvfa.2010.04.005
108. Santecchia I., Vernel-Pauillac F., Rasid O., Quintin J., Gomes-Solecki M., Boneca I. G., Werts C. Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection. PLoS Path. 2019. 157(5): e1007811. DOI: 10.1371/journal.ppat.1007811
109. Schaut R.G., McGill J.L., Neill J.D., Ridpath J.F., Sacco R.E. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated myeloid cells which is associated with decreased MyD88 expression. Virus Res. 2015. 208: 44-55. DOI: 10.1016/j.virusres.2015.05.017
110. Schiller I., Oesch B., Vordermeier H.M., Palmer M.V., Harris, B.N., Orloski K.A., Waters W.R. Bovine tuberculosis: a review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transb. Emerg. Dis. 2010. 57(4): 205-220. DOI: 10.1111/j.1865-1682.2010.01148.x
111. Shafer-Weaver K.A., Pighetti G.M., Sordillo L.M. Diminished mammary gland lymphocyte functions parallel shifts in trafficking patterns during the postpartum period. Exp. Biol. Med. 1996. 212(3): 271-280. DOI: 10.3181/00379727-212-44016
112. Smith G. Antimicrobial decision making for enteric diseases of cattle. Vet. Clin. North Am. Food Anim. Pract. 2015. 31(1): 47. DOI: 10.1016/j.cvfa.2014.11.004
113. Sordillo L.M., Raphael W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. North Am. Food Anim. Pract. 2013. 29(2): 267-278. DOI: 10.1016/j.cvfa.2013.03.002
114. Spears J.W. Micronutrients and immune function in cattle. Proc. Nutr. Soc. 2000. 59(4): 587-594. DOI: 10.1017/s0029665100000835
115. Stanfield R.L., Haakenson J., Deiss T.C., Criscitiello M.F., Wilson I.A., Smider V.V. The unusual genetics and biochemistry of bovine immunoglobulins. Adv. Imm. 2018. 137: 135-164. DOI: 10.1016/bs.ai.2017.12.004
116. Stilwell G., Carvalho R.C. Clinical outcome of calves with failure of passive transfer as diagnosed by a commercially available IgG quick test kit. Can. Vet. J. 2011. 52(5): 524-526.
117. Sultana R., McBain A.J., O'Neill C.A. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates, Appl. Envir. Microb. 2013. 79(16): 4887-4894. DOI: 10.1128/AEM.00982-13
118. Surlis C., Earley B., McGee M., Keogh K., Cormican P., Blackshields G., Tiernan K., Dunn A., Morrison S., Arguello A., Waters S.M. Blood immune transcriptome analysis of artificially fed dairy calves and naturally suckled beef calves from birth to 7 days of age. Sci. Rep. 2018. 8(1): 15461. DOI: 10.1038/s41598-018-33627-0
119. Suzuki S., Konnai S., Okagawa T., Ikebuchi R., Shirai T., Sunden Y., Mingala C.N., Murata S., Ohashi, K. Expression analysis of Foxp3 in T cells from bovine leukemia virus infected cattle. Microb. Imm. 2013. 57(8): 600-604. DOI: 10.1111/1348-0421.12073
120. Talukder A.K., Yousef M.S., Rashid M.B., Awai K., Acosta T. J., Shimizu T., Okuda K., Shimada M., Imakawa K., Miyamoto A. Bovine embryo induces an anti-inflammatory response in uterine epithelial cells and immune cells in vitro: possible involvement of interferon tau as an intermediator. J Reprod Dev. 2017. 63(4): 425-434. DOI: 10.1262/jrd.2017-056
121. Theurer M.E., Larson R.L., White B.J. Systematic review and meta-analysis of the effectiveness of commercially available vaccines against bovine herpesvirus, bovine viral diarrhea virus, bovine respiratory syncytial virus, and parainfluenza type 3 virus for mitigation of bovine respiratory disease complex in cattle. J. Amer. Vet. Med. Ass. 2015. 246(1): 126-142. DOI: 10.2460/javma.246.1.126
122. Toka F.N., Golde W.T. Cell mediated innate responses of cattle and swine are diverse during foot-and-mouth disease virus (FMDV) infection: a unique landscape of innate immunity. Imm. Lett. 2013. 152(2): 135-143. DOI: 10.1016/j.imlet.2013.05.007
123. Tomley F.M., Shirley M.W. Livestock infectious diseases and zoonoses. Philos. Trans. Royal Soc. B: Biol. Sci. 2009. 364(1530): 2637-2642. DOI: 10.1098/rstb.2009.0133
124. Trevisi E., Riva F., Filipe J., Massara M., Minuti A., Bani P., Amadori M. Innate immune responses to metabolic stress can be detected in rumen fluids. Res. Vet. Sci. 2018. 117(4): 65-73. DOI: 10.1016/j.rvsc.2017.11.008
125. Uzal F.A. Evidence-based medicine concerning efficacy of vaccination against Clostridium chauvoei infection in cattle. Vet. Clin. North Am. Food Anim. Pract. 2012. 28(1): 71-85. DOI: 10.1016/j.cvfa.2011.12.0
126. Van Emon M., Sanford C., McCoski S. Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals (Basel). 2020. 10(12): 2404. DOI: 10.3390/ani10122404
127. Vega C., Bok M., Saif L., Fernandez F., Parreño V.Egg yolk IgY antibodies: A therapeutic intervention against group A rotavirus in calves. Res. Vet. Sci. 2015. 103: 1-11. DOI: 10.1016/j.rvsc.2015.09.005
128. Villena J., Aso H., Kitazawa H. Regulation of toll-like receptors-mediated inflammation by immunobiotics in bovine intestinal epitheliocytes: role of signaling pathways and negative regulators. Front. Immun. 2014. 5: 421. DOI: 10.3389/fimmu.2014.00421
129. Vlasova A.N., Kandasamy S., Chattha K.S., Rajashekara G., Saif L.J. Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet. Imm. Immunop. 2016. 172(4): 72-84. DOI: 10.1016/j.vetimm.2016.01.003
130. Von Buenau R., Jaekel L., Schubotz E., Schwarz S., Stroff T., Krueger M. Escherichia coli strain Nissle 1917: significant reduction of neonatal calf diarrhea. J. Dairy Sci. 2005. 88(1): 317-323. DOI: 10.3168/jds.S0022-0302(05)72690-4
131. Walz P.H., Riddell K.P., Newcomer B.W., Neill J.D., Falkenberg S.M., Cortese V.S., Scruggs D.W., Short T.H. Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2. Vaccine. 2018. 36(26): 3853-3860. DOI: 10.1016/j.vaccine.2018.04.005
132. Wang F., Ekiert D.C., Ahmad I., Yu W., Zhang Y., Bazirgan O., Torkamani A., Raudsepp T., Mwangi W., Criscitiello M.F., Wilson I.A., Schultz P.G., Smider V.V.Reshaping antibody diversity. Cell. 2013. 153(6): 1379-1393. DOI: 10.1016/j.cell.2013.04.049. PMID: 23746848; PMCID: PMC4007204.
133. Weese J.S., Rousseau J. Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. J. Amer. Vet. Med. Ass. 2005. 226(12): 2031-2034. DOI: 10.2460/javma.2005.226.2031
134. Welsh M.D., Cunningham R.T., Corbett D.M., Girvin R.M., McNair J., Skuce R.A., Bryson D.G., Pollock J.M. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. Immunology. 2005. 114(1): 101-111. DOI: 10.1111/j.1365-2567.2004.02003.x
135. Weng M., Walker W.A. The role of gut microbiota in programming the immune phenotype. J. Devel. Orig. Health Dis. 2013. 4(3): 203-214. DOI: 10.1017/S2040174412000712
136. Wheeler T.T., Hodgkinson A.J., Prosser C.G., Davis S.R. Immune components of colostrum and milk--a istorical perspective. J. Mamm. Gland Biol. Neopl. 2007. 12(4): 237-247. DOI: 10.1007/s10911-007-9051Willing B.P., Gill N., Finlay B.B. The role of the immune system in regulating the microbiota. Gut Microbes. 2010. 1(4): 213-223. DOI: 10.4161/gmic.1.4.12520
137. Willing B.P., Gill N., Finlay B.B. The role of the immune system in regulating the microbiota. Gut Microbes. 2010. 1(4): 213-223. DOI: 10.4161/gmic.1.4.12520
138. Wira C.R., Fahey J.V., Rodriguez-Garcia M., Shen Z., Patel M.V.Regulation of mucosal immunity in the female reproductive tract: the role of sex hormones in immune protection against sexually transmitted pathogens. Am. J. Repr. Imm. 2014. 72(2): 236-258. DOI: 10.1111/aji.12252
139. Wyckoff J.H. 3rd. Bovine T lymphocyte responses to Brucella abortus. Vet. Microb. 2002. 90(1-4): 395-415. DOI:10.1016/s0378-1135(02)00224-9
140. Xue M.Y., Sun H.Z., Wu X.H., Liu J.X., Guan L.L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome. 2020. 8(1): 64. DOI: 10.1186/s40168-020-00819-8
141. Young W., Hine B.C., Wallace O.A., Callaghan M., Bibiloni R. Transfer of intestinal bacterial components to mammary secretions in the cow. Peer J. 2015. 3: 888. DOI: 10.7717/peerj.888
142. Zaragoza N.E., Orellana C.A., Moonen G.A., Moutafis G., Marcellin E. vaccine production to protect animals against pathogenic Clostridia. Toxins (Basel). 2019. 11(9): 525. DOI: 10.3390/toxins11090525
143. Zhao X.J, Li Z.P, Wang J.H. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health зсin lactating Holstein cows. J. Vet. Sci. 2015. 16(4): 439-446. DOI: 10.4142/jvs.2015.16.4.439
144. Zhuang Y., Futse J.E., Brown W.C., Brayton K.A., Palmer G.H. Maintenance of antibody to pathogen epitopes generated by segmental gene conversion is highly dynamic during long-term persistent infection. Inf. Imm. 2007. 75(11): 5185-5190. DOI: 10.1128/IAI.00913-07