Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр животноводства – ВИЖ имени академика Л.К. Эрнста»
В настоящее время известно, что многочисленные семейства цитокинов вырабатываются в клетках разных органов и тканей, они регулируют межклеточные и межсистемные взаимодействия, определяют стимуляцию или подавление роста клеток, их дифференцировку и функциональную активность. Установлено, что закладка эпигенетических эффектов цитокинов в эмбриональный и плодный периоды может определять потенциал жизнеспособности и продолжительности жизни, поэтому основное внимание в исследованиях по проблеме повышения уровня «первичного» здоровья необходимо уделять эффектам ранней детерминации показателей здоровья, уровня защитных сил и потенциала жизнеспособости организма продуктивных животных. Основные разделы обзора: – влияние эпигенетических факторов ранних периодов развития на формирование потенциала жизнеспособости продуктивных животных; общая характеристика системы цитокинов; адипокины, (адипонектин, лептин, RBP4. TGFβ); гепатокины (активин-Е, ангиопоэтин-подобный белок, фетуины); миокины (синтез миостатина, сигнальный путь миостатина, сигнальный путь BMP, участие миостатина, в регуляции роста и развития; исследования по стимуляции роста скелетных мышц у продуктивных животных, Представлены отечественные методические разработки по получению бактериального штамма, экспрессирующего рекомбинантный миостатин с повышенной иммуногенностью. Результаты проведенного на молодняке овец экспероимента по иммунизация животных модифицированным рекомбинантным миостатином для индукции синтеза специфических аутоантител свидетельствуют о перспективности продолжения исследований для повышения стимуляции наращивания массы мышц и качества получаемой мясной продукции.
1. Богомолова T.Г., Добровольская О.А., Мировская А.А., Аль-Шехадат Р.И., Федорова Е.А., Духовлинов И.В., Симбирцев А.С. Разработка кандидатной субстанции рекомбинантного белка CRM197. // Эпидемиология и вакцинопрофилактика. 2016. Т. 15. № 1. с. 93-98. DOI: 10.31631/2073-3046-2016-15-1-93-98
2. Езерский В.А., Колоскова Е.М. Зависимость антительного ответа молодняка овец от способа иммунизации рекомбинантным миостатином // Биомедицина. 2024. Т. 20. № 3Е. с. 42–48. https://doi.org/10.33647/2713-0428-20-3Е-42-48
3. Жукова О.Б., Колоскова Е.М. Иммунизация ягнят рекомбинантным миостатином влияет на показатели роста // Биомедицина. 2024. Т.20. № 3Е. с. 54–58. https://doi.org/10.33647/2713-0428-20-3Е-54-58
4. Зубенко Э.В., Некрасов Д.К. Прогнозирование племенной ценности быков-производителей по пожизненной продуктивности их дочерей с использованием полифакторных селекционных индексов. // Проблемы биологии продуктивных животных. 2024. № 4. с. 68-80.
5. Колоскова Е.М., Езерский В.А., Жукова О.Б. На пути к разработке биоинженерных методов повышения мясной продуктивности животных: получение бактериального штамма – продуцента рекомбинантного миостатина. // Проблемы биологии продуктивных животных. 1922. № 4. С. 49-60.
6. Колоскова Е.М., Езерский В.А., Жукова О.Б. Получение рекомбинантного модифицированного миостатина с повышенной иммуногенностью. Проблемы биологии продуктивных животных. 2024;4:19-28.
7. Колоскова Е.М., Езерский В.А.. Рекомбинантный миостатин: выделение и использование в вакцинах. // Биомедицина. 2023. № 3 (в печати)
8. Кукес В.Г., Газданова А.А., Фуралев В.А., Маринин В.Ф., Перков А.В., Ленкова Н.И., Соловьева С.А., Рязанцева О.В. Современное представление о биологической роли и клиническом значении миостатина – главного регулятора роста и дифференцировки мышц. // Медицинский вестник Северного Кавказа. 2021. Т. 16. № 3. с. 327-332. DOI: 10.14300/mnnc.2021.16079
9. Черепанов Г.Г. Новые подходы в изучении жизнеспособности высокоудойных коров: концепции, модели, анализ данных. // Проблемы биологии продуктивных животных 2022. № 2. С. 5-42.
10. Черепанов Г.Г. Физиологический мониторинг на основе систем биосенсоров и технологий Big Data: возможности и перспективы для повышения жизнеспособности высокоудойных коров. // Проблемы биологии продуктивных животных. 2021. № 1: с. 75-86.
11. Шишкин С.С. Миостатин и некоторые другие биохимические факторы, регулирующие рост мышечных тканей у человека и ряда высших позвоночных. // Успехи биологической химии. 2004. № 44. с. 209-262.
12. Aiello D.; Patel K.; Lasagna E. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. // Anim. Genet. 2018. 49: 505-519, doi:10.1111/age.12696.
13. Alapatt P., Guo F., Komanetsky S.M., et al. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). // J. Biol. Chem. 2013. 288(2): 1250-1265. https://doi.org/10.1074/jbc.M112.369132.
14. Amirouche A., Durieux A.-C., Banzet S. et al. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. // Endocrinology. 2009. 150(1): 286-294. DOI:10.1210/en.2008-0959
15. Andersson O., Reissmann E., Jörnvall H., Ibáñez C.F. (). Synergistic interaction between Gdf1 and Nodal during anterior axis development. // Develop. Biol. 2006. 293(2): 370-381. doi:10.1016/j.ydbio.2006.02.002
16. Artaza J.N. et al., Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. // Endocrinology, 2005. 146(8): 3547‐3557.
17. Banchero G.E., Clariget R.P., Bencini R., Lindsay D.R., Milton J.T., Martin G.B. Endocrine and metabolic factors involved in the effect of nutrition on the production of colostrum in female sheep. // Reprod. Nutr. Dev. 2006. 46: 447-460. doi: 10.1051/rnd:2006024
18. Barb C., Kraeling R. Role of leptin in the regulation of gonadotropin secretion in farm animals. // Anim. Reprod. Sci. 2004. 82: 155-167. doi: 10.1016/j.anireprosci.2004.04.032
19. Barker D.J.P. Fetal origins of coronary heart disease. // Brit. Med. J. 1995.l311: 171-174.
20. Barker D.J.P. The developmental origins of adult disease. // J. Am. Coll. Nutr. 2004. 23(Suppl. 6): 588-595. doi: 10.1080/07315724.2004.10719428
21. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. // Cell. Res. 2011. 21: 381-395. DOI: 10.1038/cr.2011.22
22. Barker D.J.P. Fetal origins of coronary heart disease. Brit. Med. J. 1995. l311: 171-174.
23. Batistel F., Alharthi A.S., Yambao R.R. et al. Methionine supply during late-gestation triggers offspring sex-specific divergent changes in metabolic and epigenetic signatures in bovine placenta. // J. Nutr. 2019. 149: 6-17. doi: 10.1093/jn/nxy240
24. Bell A.W., Greenwood P.L. Prenatal origins of postnatal variation in growth, development and productivity of ruminants. // Anim. Prod. Sci. 2016. 56: 1217-1232. doi: 10.1071/AN15408.
25. Bell A.W., Ehrhardt R.A. Regulation of placental nutrient transport and implications for fetal growth. // Nutr. Res. Rev. 2002. 15: 211-230. doi: 10.1079/NRR200239
26. Bell M.L., Buvoli M., Leinwand L.A.). Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. // Mol. Cell Biol. 2010 30(8): 1937-1945. doi:10.1128/MCB.01370-09
27. Bier E., De Robertis E.M. Embryo development. BMP gradients: a paradigm for morphogen-mediated developmental patterning. // Science. 2015. 348(6242): aaa5838. doi:10.1126/science.aaa583Bonnet M., Cassar-Malek I., Chilliard Y., Picard B. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. // Anim. Int. J. Anim. Biosci. 2010. 4: 1093. doi: 10.1017/S1751731110000601
28. Booth A, Magnuson A, Fouts J, et al. Adipose tissue, obesity and adipokines: role in cancer promotion. // Horm. Molec. Biol. Clin. Invest. 2015. 21(1): 57-74. https://doi.org/10.1515/hmbci-2014-0037
29. Brown M.L. et al. Follistatin and follistatin like-3 differentially regulate adiposity and glucose homeostasis. // Obesity. 2011. 19(10):1940-1949.
30. Cafe L.M., Hennessy D.W., Hearnshaw H., Morris S.G., Greenwood P.L. Influences of nutrition during pregnancy an lactation on birth weights and growth to weaning of calves sired by Piedmontese or Wagyu bulls. // Austr. J. Exp. Agric. 2006. 46: 245-255. doi: 10.1071/EA05225
31. Carpinello, O.J.; DeCherney, A.H.; Hill, M.J. Developmental Origin of Health and Disease: the history of the Barker hypothesis and assisted technology. // Semin. Reprod. Med. 2018. 36: 177-182. doi: 10.1055/s-0038-1675779
32. Cammisotto P.G., Bendayan M. Leptin secretion by white adipose tissue and gastric mucosa. // Histol. Histopath. 2007. 22(2): 199-210. https://doi.org/10.14670/HH-22.199.
33. Cao X., Springer N.M., Muszynski M.G., Phillips R.L., Kaeppler S., Jacobsen S.E. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. // PNAS USA. 2000. 97(9): 4979-4984. DOI:10.1073/ pnas.97.9.4979
34. Cao X., Jacobsen S. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. // Curr. Biol. 2002. 12: 1138-1144.
35. Cao H. Adipocytokines in obesity and metabolic disease. // J. Endocrin. 2014. 220(2): T47-T59. https://doi.org/10.1530/JOE-13-0339
36. Carvalho E.B., Costa T.C., Sanglard L.P., Nascimento K.B., Meneses J.A.M., Galvão M.C., Serão N.V.L., Duarte M.S., Gionbelli M.P. Transcriptome profile in the skeletal muscle of cattle progeny as a function of maternal protein supplementation during mid-gestation. // Livest. Sci. 2022. 263: 104995. doi: 10.1016/j.livsci.2022.104995.
37. Chen D., Zhao M., Mundy G. R. Bone morphogenetic proteins. // Growth factors. 2004. 22(4): 233-241. doi:10.1080/08977190412331279890
38. Chen W., Konkel J.E. TGF-beta and ‘adaptive’ Foxp3(+) regulatory T cells. // J. Mol. Cell. Biol. 2010. 2(1): 30-36
39. Chen G., Xu H., Yao Y. et al. BMP signaling in the development and regeneration of cranium bones and maintenance of calvarial stem cells. // Front. Cell Dev. Biol. 2020. 8: 135. doi:10.3389/fcell.2020.00135
40. Chen M.M. Regulation of myostatin on the growth and development of skeletal muscle. // Front. Cell. Dev. Biol. 2021. 9(Art. 785712): 1-10. DOI: 10.3389/fcell.2021.785712
41. Cherepanov G.G. Prediction of cows viability: a new look at the old problem. // Agric. Res. Technol. (ARTOAJ). 2018. Vol. 141. Issue 5: ARTOA J. MS. ID.555931; doi: 10.19080/ARTOAJ.2018.14.555931.
42. Сherepаnov G.G., Kharitonov E.L., Ostrenko K.S. In silico predictions on the productive life span and theory of its developmental origin in dairy cows. // Animals. 2022. 12(6): 684-698.
43. Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: an endocrine organ. // Arch Med Sci. 2013. 9(2): 191-200.
44. Comb M., Goodman H.M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. // Nucleic. Acids Res. 1990. 18(13): 3975-3982. DOI: 10.1093/nar/18.13.3975
45. Copping K., Hoare A., Callaghan M., McMillen I., Rodgers R., Perry V. Fetal programming in 2-year-old calving heifers: Peri-conception and first trimester protein restriction alters fetal growth in a gender-specific manner. // Anim. Prod. Sci. 2014. 54: 1333-1337. doi: 10.1071/AN14278
46. Dickinson S.E., Elmore M.F., Kriese-Anderson L. et al, Evaluation of age, weaning weight, body condition score, and reproductive tract score in pre-selected beef heifers relative to reproductive potential. // J. Anim. Sci. Biotechnol. 2019. 10: 18. doi: 10.1186/s40104-019-0329-6
47. Du M., Yan X., Tong J.F., Zhao J., Zhu M.J. Maternal obesity, inflammation, and fetal skeletal muscle development. // Biol. Reprod. 2010. 82: 4-12. doi: 10.1095/biolreprod.109.077099
48. Du M., Tong J., Zhao J., Underwood K.R., Zhu M., Ford S.P. Fetal programming of skeletal muscle development in ruminant animals. // J. Anim. Sci. 2010. 88: E51-E60. doi: 10.2527/jas.2009-2311
49. Duarte M.S., Gionbelli M.P., Paulino P.V.R. et al. Effects of maternal nutrition on development of gastrointestinal tract of bovine fetus at different stages of gestation. // Livest. Sci. 2013. 153: 60-65. doi: 10.1016/j.livsci.2013.01.006
50. Duarte M.S., Gionbelli M.P., Paulino P.V.R. et al. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses. // J. Anim. Sci. 2014. 92: 3846-3854. doi: 10.2527/jas.2014-7568
51. Ennequin G., Sirvent P., Whitham M. Role of exercise-induced hepatokines in metabolic disorders. // Am. J. Physiol. Endocrin. Metab. 2019. 317(1): E11-E24. doi: 10.1152/ajpendo.00433.2018. PMID 30964704. S2CID 106409704
52. Esfahani M., Baranchi M., Goodarzi M.T. The implication of hepatokines in metabolic syndrome. // Diab. Metab. Syndr. 2019. 13 (4): 2477–2480. doi: 10.1016/j.dsx.2019.06.027. PMID 31405664. S2CID 198296158.
53. Feldman B.J. et al. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. // Proc. Nat. Acad. Sci. USA. 2006. 103(42): 15675‐156.
54. Ferreira A.O., Vasconcelos B.G., Favaron P.O. et al. Desenvolvimento do sistema nervoso central de bovinos. // Pesqui. Vet. Bras. 2018. 38: 147-153. doi: 10.1590/1678-5150-pvb-5020
55. Ferreira M.F.L., Rennó L.N., Detmann E. et al. Performance, metabolic and hormonal responses of grazing Nellore cows to an energy-protein supplementation during the pre-partum phase. // BMC Vet. Res. 2020. 16: 108.
56. Finnegan E.J., Kovac K.A. Plant DNA methyltransferases. // Plant Моl. Biol. 2000. 43 (2-3): 189-201. DOI: 10.1023/a:1006427226972
57. Forbes D., Jackman M., Bishop A., Thomas M., Kambadur R. Sharma M. Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. // J. Cell. Physiol. 2006. 206(1): 264-272. doi:10.1002/ jcp.20477
58. Friedrichs M., Wirsdöerfer F., Flohé S. B., Schneider S., Wuelling M., Vortkamp A. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants. // BMC Cell. Biol. 2011. 12(1), 26. doi:10.1186/ 1471-2121-12-26
59. Ge X., Vajjala A., McFarlane C., Wahli W., Sharma M., Kambadur R. Lack of Smad3 signaling leads to impaired skeletal muscl regeneration. // Am. J. Physiol. Endocr. Metab. 2012. 303(1): E90-E102. doi:10.1152/ajpendo.00113.2012
60. Gillman M.W. Developmental origins of health and disease. // N. Engl. J. Med. 2005. 353: 1848-1850.
61. Gionbelli T., Rotta P., Veloso C. et al. Intestinal development of bovine foetuses during gestation is affected by foetal sex and maternal nutrition. // J. Anim. Physiol. Anim. Nutr. 2017. 101: 493-501. doi: 10.1111/jpn.12572 [
62. Goldberg A.D., Allis C.D., Bernstein E. Epigenetics: a landscape takes shape. // Cell. 2007. 128: 635-638. DOI: 10.1016/j.cell.2007.02.006
63. Grobet L. et al. A deletion in the bovine myostatin gene causes the double‐muscled phenotype in cattle. // Nat. Genet., 1997. 17(1): 71‐74.
64. Gurevitch J., Koricheva J., Nakagawa S., Stewart G. Meta-analysis and the science of research synthesis. // Nature. 2018. 555: 175-182. doi: 10.1038/nature25753
65. Hamers‐Casterman C.; Atarhouch T.; Muyldermans S. et al. Naturally occurring antibodies devoid of light chains. // Nature. 1993, 363, 446– 448, doi:10.1038/363446a0
66. Hansen J.S., Plomgaard P.. Circulating follistatin in relation to energy metabolism. // Mol. Cell. Endocr. 2016. 433: 87-93.
67. Hoffmann A., Gross G. BMP signaling pathways in cartilage and bone formation. // Crit. Rev. Eukaryot. Gene Expr. 2001. 11(1-3): 23-45. doi: 10.1615/ critreveukargeneexpr.v11.i1-3.20
68. Hoffman M., Reed S., Pillai S., Jones A., McFadden K., Zinn S., Govoni K. Physiology and endocrinology symposium: The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. // J. Anim. Sci. 2017. 95: 2222-2232. doi: 10.2527/jas.2016.1229
69. Hu S.; Chen C.; Sheng J., Sun Y., Cao X., Qiao J. Enhanced muscle growth by plasmid‐mediated delivery of myostatin propeptide. // J. Biomed. Biotechn. 2010. 862591. doi:10.1155/2010/862591
70. Hu S.; Ni W.; Sai W. et al. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. // PLoS One. 2013. 8: 58521. doi:10.1371/journal.pone.0058521
71. Huber E., Notaro U.S., Recce S., Rodríguez F.M., Ortega H.H., Salvetti N.R., Rey F. Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. // Anim. Reprod. Sci. 2020. 216: 106348. doi: 10.1016/j.anireprosci.2020.106348
72. Hung J., Sellappan S. Epigenetic modifications regulate gene expression. // Path. Mag. 2008. 8: 1-5.
73. Hyttel P., Sinowatz F., Vejlsted M. Embriologia Veterinária. Rio de Janeiro: Elsevier Ltda. 2012.
74. Jensen-Cody S.O., Potthoff M.J. Hepatokines and metabolism: Deciphering communication from the liver. // Mol. Metab. 2021. 44:101138. doi:10.1016/j.molmet.2020.101138.
75. Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. // Nat. Rev. Genet. 2012. 13(7): 484-492. DOI: 10.1038/nrg3230
76. Kabaran S., Besler H.T. Do fatty acids affect fetal programming? // J. Health Popul. Nutr. 2015. 33: 14. doi: 10.1186/s41043-015-0018-9
77. Kambadur R. et al. Mutations in myostatin (GDF8) in double‐muscled Belgian Blue and Piedmontese cattle. // Genome Res. 1997. 7(9): 910‐916
78. Khanal P., Nielsen M.O. Impacts of prenatal nutrition on animal production and performance: A focus on growth and metabolic and endocrine function in sheep. // J. Anim. Sci. Biotechnol. 2017. 8: 75. doi: 10.1186/s40104-017-0205
79. Khoramipour K., Chamari K., Hekmatikar A.A. et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. // Nutrients. 2021. 13(4): 1180. https://doi.org/10.3390/nu13041180
80. Kim et al. Inhibition of preadipocyte differentiation by myostatin treatment in 3T3‐L1 cultures. // Biochem. Biophys. Res. Comm. 2001. 281(4): 902‐906.
81. Kim J.Y., Van De Wall E., Laplante M. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. // J. Clin. Investig. 2007. 117: 2621-2637. https://doi.org/10.1172/JCI31021.
82. Kim T.H., Hong D.G., Yang Y.M. (December). Hepatokines and non-alcoholic fatty liver disease: linking liver pathophysiology to metabolism. // Biomedicines. 2021. 9(12): 1903. doi: 10.3390/biomedicines9121903. PMC 8698516. PMID 34944728
83. Ladeira M., Schoonmaker J., Gionbelli M., Dias J., Gionbelli T., Carvalho J.R., Teixeira P. Nutrigenomics and beef quality: A review about lipogenesis. // Int. J. Mol. Sci. 2016. 17: 918. doi: 10.3390/ijms1706
84. Lamarche É., AlSudais H., Rajgara R., Fu D., Omaiche S., Wiper-Bergeron N. SMAD2 promotes myogenin expression and terminal myogenic differentiation. // Development. 2021. 148(3). doi:10.1242/dev.195495
85. Langley B., Thomas M., Bishop A., Sharma M., Gilmour S., Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. // J. Biol. Chem. 2002. 277(51): 49831-9840. doi:10.1074/ jbc.M204291200
86. Lee S.J., Reed L.A., Davies M.V. et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. // Proc. Nat. Acad. Sci. USA. 2005. 102(50): 18117-18122. DOI: 10.1073/pnas.0505996102
87. Lee S. J. Genetic analysis of the role of proteolysis in the activation of latent myostatin. // PLoS One. 2008. 3(2): e1628. doi:10.1371/journal.pone.0001628
88. Lee S.A., Yuen J.J., Jiang H. et al. Adipocyte specific overexpression of retinol-binding protein 4 causes hepatic steatosis in mice. // Hepatology. 2016. 64: 1534-1546.
89. Li X., Wang J., Jia Z. et al. MiR-499 regulates cell proliferation and apoptosis during late-stage differentiation via Sox6 and cyclin D1. // PLos One. 2013. 8(9): e74504. doi: 10.1371/journal.pone.0074504. eCollection 2013
90. Lin J. et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. // Biochem. Bioph. Res. Comm. 2002. 291(3): 701‐706.
91. Love O.P., Chin E.H., Wynne-Edwards K.E., Williams T.D. Stress hormones: A link between maternal condition and sex-biased reproductive investment. // Am. Nat. 2005. 166: 751-766. doi: 10.1086/497440.
92. Ma X., Zhou Z., Chen Y. et al. RBP4 functions as a hepatokine in the regulation of glucose metabolism by the circadian clock in mice. // Diabetologia. 2016. 59: 354-362. https://doi.org/10.1007/s00125-015-3807-1
93. Maresca S., Valiente S.L., Rodriguez A.M., Long N.M., Pavan E., Quintans G. Effect of protein restriction of bovine dams during late gestation on offspring postnatal growth, glucose-insulin metabolism and IGF-1 concentration. // Livest. Sci. 2018. 212: 120-126. doi: 10.1016/j.livsci.2018.04.009
94. Marquez D., Paulino M., Rennó L. et al. Supplementation of grazing beef cows during gestation as a strategy to improve skeletal muscle development of the offspring. // Animal. 2017. 11: 2184-2192. doi: 10.1017/S1751731117000982
95. Matsakas A., Diel P. The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis. // Int. J. Sports Med. 2005. 26. 83-89, doi:10.1055/s‐2004‐830451
96. McLean K.J., Boehmer B.H., Spicer L.J., Wettemann R.P. The effects of protein supplementation of fall calving beef cows on pre-and postpartum plasma insulin, glucose and IGF-I, and postnatal growth and plasma insulin and IGF-I of calves. // J. Anim. Sci. 2018. 96: 2629-2639. doi: 10.1093/jas/sky173
97. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF‐beta superfamily member. // Nature. 1997. 387(6628): 83‐90
98. Mellor D., Flint D., Vernon R., Forsyth I. Relationships between plasma hormone concentrations, udder development and the production of early mammary secretions in twin-bearing ewes on different planes of nutrition. // Q. J. Exp. Physiol. Transl. Integr. 1987. 72: 345-356. doi: 10.1113/expphysiol.1987.sp003080
99. Mohammadabadi M., Bordbar F., Jensen J., Du M., Guo W. Key genes regulating skeletal muscle development and growth in farm animals. // Animals. 2021. 11: 835. doi: 10.3390/ani11030835
100. Munkhtulga L, Nagashima S., Nakayama K., et al. Regulatory SNP in the RBP4 gene modified the expression in adipocytes and associated with BMI. // Obesity. 2010. 18: 1006-1014. https://doi.org/10.1038/oby.2009.358
101. Mosher D.S., Quignon P., Bustamante C.D. et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. // PLoS Genet. 2007, 3, e79, doi:10.1371/journal.pgen.0030079.
102. Nielsen T.L., Vissing J., Krag T.O. Antimyostatin treatment in health and disease: the story of great expectations and limited success. // Cells. 2021. 10(3): 533. DOI: 10.3390/cells10030533
103. Novosel’tsev, V.N., Novosel’tseva, J.A., Bojko, S.M., Yashin, A.I. Homeostasis and aging: slow-fast mathematical model of senescence and death. In: Modeling and Control in Biomedical Systems. Karlsburg/Greifswald, 2000. P. 71-76.
104. Oh Kyoung-Jin et al. Metabolic adaptation in obesity and type II diabetes: myokines, adipokines and hepatokines. // MDPI (Multidisciplinary Digital Publishing Institute). 2016. 22 Dec. https://www.mdpi.com/1422-0067/18/1/8
105. Opsomer G., Van Eetvelde M., Kamal M., Van Soom A. Epidemiological evidence for metabolic programming in dairy cattle. // Reprod. Fertil. Dev. 2016. 29: 52-57. DOI: 10.1071/RD1641
106. Ou K., Li Y., Wu P. et al. A novel nanobody directed against ovine myostatin to enhance muscle growth in mouse. // Animals (Basel). 2020. 10(Art. 1398): 1-9. DOI: 10.3390/ani10081398
107. Petersen M.A., Tognatta R., Meyer-Franke A. et al. BMP receptor blockade overcomes extrinsic inhibition of remyelination and restores neurovascular homeostasis. // Brain. 2021. 144(8): 2291-2301. doi:10.1093/brain/awab106
108. Pfeifer L.F., Castro N.A., Neves P.M., Cestaro J.P., Siqueira L.G. Development and validation of an objective method for the assessment of body condition scores and selection of beef cows for timed artificial insemination. // Livest. Sci. 2017. 197: 82-87. doi: 10.1016/j.livsci.2017.01.011
109. Pfeifer L.F.M., Rodrigues W.B., Nogueira E. Relationship between body condition score index and fertility in beef cows subjected to timed artificial insemination. // Livest. Sci. 2021. 248: 104482. doi: 10.1016/j.livsci.2021.104482
110. Ploquin C., Chabi B., Fouret G. et al. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle. // Am. J. Physiol. Endocr. Metab. 2012. 302(8): E1000–E1008. doi:10.1152/ajpendo.00652.201
111. Prayaga K. Evaluation of beef cattle genotypes and estimation of direct and maternal genetic effects in a tropical environment. 1. Growth traits. // Aust. J. Agric. Res. 2003. 54: 1013-1025. doi: 10.1071/AR03071
112. Ramírez-Zamudio G.D., da Cruz W.F., Schoonmaker J.P. et al. Effect of rumen-protected fat on performance, carcass characteristics and beef quality of the progeny from Nellore cows fed by different planes of nutrition during gestation. // Livest. Sci. 2022. 258: 104851. doi: 10.1016/j.livsci.2022.104851
113. Redmer D., Wallace J., Reynolds L. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. // Domest. Anim. Endocrinol. 2004. 27: 199-217. doi: 10.1016/j.domaniend.2004.06.006
114. Reynolds L.P., Redmer D.A. Utero-placental vascular development and placental function. // J. Anim. Sci. 1995. 73: 1839-1851. doi: 10.2527/1995.7361839x
115. Rodgers B.D., Garikipati D. K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. // Endocr. Rev. 2008. 29(5): 513-534. doi:10.1210/er.2008-0003
116. Ruigrok V.J., Levisson M. Eppink M.H., Smidt H., van der Oost J. Alternative affinity tools: More attractive than antibodies? // Biochem. J. 2011. 436: 1-13, doi:10.1042/bj20101860.
117. Rutten C.J., Velthuis A.G.J., Steeneveld W., Hogeveen H. Invited review: Sensors to support health management on dairy farms. // J. Dairy Sci. 2013. 96: 1928-1952. https://doi.org/10.3168/jds.2012-6107 23462176
118. Salvador J.P., Vilaplana L., Marco M.P. Nanobody: Outstanding features for diagnostic and therapeutic applications. // Anal. Bioanal. Chem. 2019. 411: 1703-1713. doi:10.1007/s00216‐019‐01633‐4
119. Sartori R., Milan G., Patron M. et al. Smad2 and 3 transcription factors control muscle mass in adulthood. // Am. J. Physiol. Cell Physiol. 2009. 296(6): 1248-1257. doi:10.1152/ ajpcell.00104.2009
120. Sartori R., Schirwis E., Blaauw B. Bortolanza S., Zhao J., Enzo E. et al. BMP signaling controls muscle mass. // Nat. Genet. 2013. 45(11): 1309-1318. doi:10.1038/ng.2772
121. Seo D.Y., Park S.H., Marquez J., Kwak H.B., Kim T.N., Bae J.H. et al. hepatokines as a molecular transducer of exercise. // J. Clin. Med. 2021. 10(3): 385. doi:10.3390/jcm10030385.
122. Schnyder S., Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. // Bone. 2015. Nov 80: 115-125.
123. Sidis Y., Mukherjee A., Keutmann H., Delbaere A., Sadatsuki M., Schneyer A. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. // Endocrinology. 2006. 147(7): 3586-3597. doi: 10.1210/en.2006-0089
124. Singh К., Molenaar A.J., Swanson K.M., Gudex B., Arias J.A., Erdman R.A., Stelwagen K.. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production. // Animal, 2012. 6: 375-381. https://doi.org/10.1017/S1751731111002564
125. Siontorou C.G. Nanobodies as novel agents for disease diagnosis and therapy. // Int. J. Nanomed. 2013. 8: 4215–4227. doi:10.2147/ijn.s39428
126. Smati S., Régnier M., Fougeray T., Polizzi A., Fougerat A., Lasserre F. et al. Regulation of hepatokine gene expression in response to fasting and feeding: Influence of PPAR-α and insulin-dependent signalling in hepatocytes. // Diab. Metab. 2020. 46(2): 129-136. doi:10.1016/j.diabet.2019.05.005
127. Starbuck M.J., Dailey R.A., Inskeep E.K. Factors affecting retention of early pregnancy in dairy cattle. // Anim. Reprod. Sci. 2004. 84: 27-39. doi: 10.1016/j.anireprosci.2003.12.009
128. Stefan N., Haring H.U. The role of hepatokines in metabolism. // Nature Rev. Endocr. 2013. 9(3): 144-152.
129. Stolz L.E. et al. Administration of myostatin does not alter fat mass in adult mice. // Diab. Obes. Metab. 2008. 10(2): 135‐142.
130. Suh J., Kim N.-K., Lee S.-H. et al. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. // Proc. Natl. Acad. Sci. USA. 2020. 117(9): 4910-4920. doi:10.1073/pnas.1916034117
131. Swanson J.M., Wadhwa P.D. (Eds). Genes, Environments and Human Development, Health and Disease (GEHDHD) meeting. Arnold and Mabel Beckman Center of the National Academy of Sciences. September 7-8, 2006.
132. Swanson T., Hammer C., Luther J., Carlson D., Taylor J., Redmer D., Neville T., Reed J., Reynolds L., Caton J. Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs. // J. Anim. Sci. 2008. 86: 2415-2423. doi: 10.2527/jas.2008-0996
133. Tang L., Yan Z., Wan Y., Han W., Zhang Y. Myostatin DNA vaccine increases skeletal muscle mass and endurance in mice. // Muscle Nerve. 2007. 36(3}:342-348. doi: 10.1002/mus.20791
134. Tang L., Kang Y., Sun S., Zhao T. et al. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. // J. Bone Miner. Metab. 2020. 38(1): 14-26. doi: 10.1007/s00774-019-01029-5
135. Taylor W.E., Bhasin S., Artaza J., Byhower F. et al. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. // Am. J. Physiol. Endocr. Metab. 2001. 280(2): 221-228. doi: 10.1152/ajpendo.2001.280.2.E221
136. Underwood K., Tong J., Price P., Roberts A., Grings E., Hess B., Means W., Du M. Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers. // Meat Sci. 2010. 86: 588-593. doi: 10.1016/j.meatsci.2010.04.008
137. Walker R.G., Poggioli T., Katsimpardi L., Buchanan S.M. et al. Biochemistry and biology of GDF11 and myostatin. // Circ. Res. 2016. 118(7): 1125-1142. doi: 10.1161/CIRCRESAHA.116.308391
138. Wang Y., Fan Z., Shao L., Kong X., Hou X. Tian D., Sun Y., Xiao Y., Yu L. Nanobody‐derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. // Int. J. Nanomed. 2016. 11: 3287-3303. doi: 10.2147/ijn.s107194
139. Wang F., So K.F., Xiao J., Wang H. Organ-organ communication: The liver's perspective. // Theranostics. 2021. 11(7): 3317-3330. doi: 10.7150/thno.55795.
140. Weiss A., Attisano L. The TGFbeta superfamily signaling pathway. // Wiley Interdiscip. Rev. Dev. Biol. 2013. 2(1): 47-63.
141. Williams M.S. Myostatin mutation associated with gross muscle hypertrophy in a child. // N. Engl. J. Med. 2004. 351: 1030-1031.
142. Rabe K., Lehrke M., Parhofer K.G. et al. Adipokines and insulin resistance. // Mol. Med. 2008.14(11-12): 741-51 https://doi.org/10.2119/2008-00058
143. Rebbapragada A., Benchabane H., Wrana J. L., Celeste A. J. Attisano L. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. // Mol. Cell Biol. 2003. 23(20): 7230-7242. doi:10.1128/MCB.23.20.7230-7242.2003
144. Wolfman N.M., McPherron A.C., Pappano W.N., Davies M.V. et al. Activation of latent myostatin by the bmp-1/ tolloid family of metalloproteinases. // Proc. Natl. Acad. Sci. 2003. 100(26): 15842-15846. doi: 10.1073/pnas.2534946100
145. Yadav H., Quijano C., Kamaraju A.K., et al. Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. // Cell Metab. 2011; 14(1): 67-79.
146. Yakout S.M., Hussein S., Al-Attas O.S., Hussain S.D., Saadawy G.M., Al-Daghri N.M. Hepatokines fetuin A and fetuin B status in women with/without gestational diabetes mellitus. // Am. J. Transl. Res. 2023. 15(2): 1291-1299. PMC 10006815. PMID 36915725
147. Zaborski D., Grzesiak W., Szatkowska I., Dybus A., Muszynska M., Jedrzejczak M. Factors affecting dystocia in cattle. // Reprod. Domest. Anim. 2009. 44: 540-551. doi: 10.1111/j.1439-0531.2008.01123.x.
148. Zago D., Canozzi M.E.A., Barcellos J.O.J. Pregnant beef cow’s nutrition and its effects on postnatal weight and carcass quality of their progeny. // PLoS One. 2020. 15: e0237941. doi: 10.1371/journal.pone.0237941.
149. Zakria H.M., Han B., Yue F. et al. Significant body mass increase by oral administration of a cascade of shIL21-MSTN yeast-based DNA vaccine in mice. // Biomed. Pharmacother. 2019. 118(Art. 109147). DOI: 10.1016/j.biopha.2019.109147.
150. Zhang T., Yang H., Wang R. et al. Oral administration of myostatin-specific whole recombinant yeast Saccharomyces cerevisiae vaccine increases body weight and muscle composition in mice. // Vaccine. 2011. 29(46): 8412-8416. DOI: 10.1016/j.vaccine.2011.08.007
151. Zhang T., Sun L., Xin Y. et al. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin. // BMC Biotechnol. 2012. 12(Art. 97). DOI: 10.1186/1472-6750-12-97
152. Zhao S., Xu W., Jiang W., Yu W. et al. Regulation of cellular metabolism by protein lysine acetylation. // Science. 2010. 327: 1000-1004. DOI: 10.1126/science.1179689
153. Zhang W., Wang S.-Y., Deng S.-Y., Gao L., Yang L.-W., Liu X.-N. et al. MiR-27b promotes sheep skeletal muscle satellite cell proliferation by targeting myostatin gene. // J. Genet. 2018. 97(5), 1107-1117. doi: 10.1007/s12041- 018-0998-5
154. Zhu X.; Hadhazy M.; Wehling M.; Tidball J.G.; McNally E.M. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. // FEBS Lett. 2000. 474: 71-75. doi: 10.1016/s0014‐5793(00)01570