#### УПРАВЛЕНИЕ РАЗВИТИЕМ КРУПНОМАСШТАБНЫХ СИСТЕМ MLSD'2019

# МАТЕРИАЛЫ ДВЕНАДЦАТОЙ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ (1–3 ОКТЯБРЯ 2019 г., МОСКВА, РОССИЯ)

Под общей редакцией академика С.Н. Васильева, д.т.н. А.Д. Цвиркуна

#### НАУЧНОЕ ЭЛЕКТРОННОЕ ИЗДАНИЕ

Москва ИПУ РАН 2019

# СЕКЦИЯ 15: УПРАВЛЕНИЕ РАЗВИТИЕМ КРУПНОМАСШТАБНЫХ СИСТЕМ ЗДРАВООХРАНЕНИЯ, МЕДИКО-БИОЛОГИЧЕСКИХ СИ-СТЕМ И ТЕХНОЛОГИЙ

c. 1138-1139

Новые аспекты в трактовке параметров функции Гомпертца и их использовании в задачах прогнозирования выживаемости и разведении продуктивных животных

Черепанов Г.Г.

ВНИИ физиологии, биохимии и питания животных - филиал ФНЦ животноводства - ВИЖ им. ак. Л.К. Эрнста, Боровск Калужской обл., Российская Федерация

Аннотация. На основе базы данных по племенному учёту молочных коров и численного моделирования с использованием функции Гомпертца показано, что продолжительность продуктивной жизни в группах и популяциях животных в значительной степени определяется уровнем жизнеспособности, сформированным к возрасту репродуктивной зрелости.

#### Введение

Разработка программ научно-технологического развития имеет важнейшее значение для подотраслей АПК, обеспечивающих продовольственную безопасность, в том числе для молочного скотоводства. Учитывая ряд негативных тенденций в этой отрасли в РФ в плане сокращения численности популяций, качества, пищевой безопасности молочной продукции и рентабельности производства, целевым ориентиром должна стать задача создания и устойчивого воспроизводства популяций молочных коров нового типа со сбалансированным соотношением параметров продуктивности, жизнеспособности и плодовитости. Для этого нужны ясные количественные критерии для раннего прогнозирования племенных и продуктивных качеств и проведения скринингового исследования физиологического статуса животных на всех этапах онтогенеза.

Цель данной работы — анализ эмпирических данных по динамике выживаемости в неоднородной популяции молочных коров, выявление закономерностей в соотношении параметров функции Гомпертца и формулирование на этой основе ориентиров для разведения и устойчивого воспроизводства популяций молочных коров нового типа.

#### Материал и методы

Для анализа выживаемости использован метод поперечного исследования; в качестве материала исследования использовали данные производственного учёта возрастного состава стада коров по региональным производственным подразделениям Ленинградской области в период 1985-1990 гг., усреднённые за 5 лет с целью компенсации отклонений от стационарности условий обновления стала. При этом последовательные возрастные группы представляют собой остатки соответствующих когорт (совокупностей генетически однородных особей одного и того же года рождения). Интенсивность выбытия из когорты (выбраковки по сумме причин) описывалась функцией Гомпертца:

 $y_c(t) = \Delta S/(S*\Delta t) = B \exp(ct),$ 

где S — численность когорты в момент времени t (номер лактации),  $\Delta S$  — величина уменьшения численности за отрезок  $\Delta t$  =1. В расчётах выживаемости использовали «усечённое» распределение Гомпертца — без учёта небольшого количества особей — «рекордных долгожительниц». Наибольшее значение t (номер последней завершённой лактации) в оставшейся части когорты принималось в качестве максимальной продолжительности продуктивной жизни.

Для проверки корректности этого приёма производилось сравнение приближённого решения (аппроксимация с использованием «усечённого» распределения, дискретной шкалы времени и численных расчётов) и точного аналитического прогноза по формуле:

$$T=c^{-1}\exp(e^{-c}/(c/y_1))*[Ei(e^{-c}/(c/y_1)) - Ei(e^{(tmax-1)c}/(c/y_1)],$$

где T — средняя продолжительность продуктивной жизни (порядковый номер лактации);  $y_I$  — интенсивность выбытия на первой лактации,  $Ei(x) = \int_x^\infty \frac{e^{-y}}{y} dy$  — интегральная экспонента).

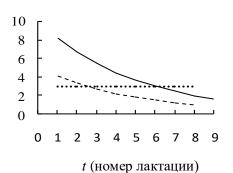
Сравнительный анализ полученных результатов показал, что для практических целей можно использовать методику приближённого численного расчёта (Черепанов и др., 2017).

## Результаты и обсуждение

Динамика выбытия коров из дойного стада в координатах интенсивность выбытия — номер лактации аппроксимировалась функцией Гомпертца при среднем значении  $\mathbb{R}^2$ , равном 0,79 для 15 проанализированных производственных подразделений и в целом по области. При этом отмечен более высокий уровень вариабельности параметра B (интенсивность выбытия на первой лакта-ции), по сравнению с величиной c (для B и c относительный размах значений (max-min)/среднее арифм. = 0,76 и 0,48 соответственно).

Ранее были получены определённые основания для трактовки величины, обратной  $y_{cl}$  в качестве показателя, характеризующего потенциал жизнеспособности («сопротивляемости смертности» по Б. Гомпертцу) популяции или группы животных (Черепанов и др., 2017). Эта эмпирически выявленная закономерность подтверждается теоретическим анализом, т.е. аналитическим прогнозом зависимости средней продолжительности жизни T от интенсивности выбытия на первой лактации,  $1/y_l$ . Иными словами, различия в уровне жизнеспособности, сформированном к началу репродуктивной деятельности, могут определять (в среднем по группе или популяции) различия в показателях продолжительности продуктивной жизни животных, т.е. в значениях T и  $t_{max}$  (Cherepanov, 2018).

Эта взаимосвязь наиболее чётко выражена, если сравниваемые группы или популяции имеют схожие значения показателя экспоненты «c» в функции Гомпертца. Такое теоретически возможно в ситуации, если «темп старения», характеризуемый показателем экспоненты, определяется, в основном, устойчивыми генетическими факторами, в том числе породой. Поэтому было предположено, что исследованная популяция в целом характеризовалась одним и тем же значением c, а наблюдаемые вариации этого параметра в региональных подразделениях данной популяции объясняются либо статистической погрешностью полученных оценок, либо влиянием других факторов, например, гетерогенностью исследованных стад по параметру B. Определённым доводом в пользу этой трактовки можно считать линейную обратную взаимосвязь между параметрами c и B, установленную по 16 исследованным производственным группам: c = 0,19 - 0,45\*B,  $R^2 = 0.70$ , P < 0.001.


Для проверки корректности сделанных предположений были проведены расчёты по анализу выживаемости для четырёх модельных гетерогенных популяций, имеющих одно и то же значение параметра c=0.1, но различающихся по значению параметра B. В каждой из четырёх серий расчёта варьировали значения B и начальную численность N. Для доказательства корректности исходных предположений требовалось по результатам расчётов показать следующее: 1) динамика интенсивности выбытия в четырёх вариантах общей популяции аппроксимируется функцией Гомпертца с достаточно высоким значением коэффициента детерминации, и 2) по четырём вариантам модельных популяций выявляется линейная обратная взаимосвязь между параметрами c и B, аналогичная установленной при анализе эмпирических данных.

Динамика интенсивности выбытия для четырёх модельных гетерогенных популяций аппроксимировалась функцией Гомпертца с высоким коэффициентом детерминации ( $R^2 = 0.81-0.92$ ), значения показателя экспоненты c для этих гетерогенных популяций варьировали в пределах

0,079-0,113, при этом имела место отрицательная корреляция между значениями c u B: c= 0.264 - 0.610\*B, R<sup>2</sup> = 0.96, P<0.001.

Аналогичная отрицательная взаимосвязь выявлена по всему массиву из 16 модельных субпопуляций между средней длительностью продуктивной жизни T и параметром B в функции Гомпертца: T = 5.12 - 6.73\*B,  $R^2 = 0.74$ , P < 0.001.

Результаты проведенного численного моделирования свидетельствует в пользу сделанного предположения о том, что в исследованной популяции коров «темп старения», характеризуемый показателем экспоненты в эмпирической функции Гомпертца, определяется, в основном, устойчивыми генетическими факторами, в том числе породными особенностями, тогда как фактически наблюдаемая популяционная вариабельность длительности продуктивной жизни животных в значительной степени зависит от «потенциала» жизнеспособности, сформированного к началу репродуктивного периода. На рис. 2 в качестве иллюстрации с непрерывной шкалой времени показаны два варианта динамики жизнеспособности в когортах, имеющих разные значения параметра B (0,1 и 0,2) и одно значение c (0,2). Расчётные моменты времени, соответствующие достижению нижней границы защитных сил и исчерпанию соответствующих когорт (длительность продуктивной жизни) -6 и 2,5 лактации.



По оси ординат — показатель жизнеспособности,  $1/y_c(t)$ . ..... — условная нижняя граница жизнеспо-собности (уровня защитных сил), определяющая сроки исчерпания когорт.

Такая трактовка полученных результатов согласуется с данными научных исследований и эмпирических наблюдений, свидетельствующих о том, что «начальный» уровень жизнеспособности является результатом взаимодействия между генетически обусловленными эффектами и эпигенетическими модификациями, фиксирующимися в ответ на воздействие эндогенных и экзогенных факторов на этапах онтогенеза, предшест-вующих возрасту репродуктивной зрелости (Odent, 1986; Один, 2011; Вайсерман и др., 2011; Джагаров, 2018).

Поскольку результат этих эффектов и взаимодействий зависит не только от наследуемых генетических структур, но и от «истории» событий, происходящих в критические периоды развития, то у коров рождаются потомки, а в стадах и в популяциях к началу репродуктивной зрелости возникают группы (субпопуляции) с разным потенциалом жизнеспособности.

## Заключение

Для создания и устойчивого воспроизводства популяций молочных коров со сбалансированным соотношением параметров продуктивности, жизнеспособности и плодовитости нужны ясные количественные критерии для определения принадлежности животных к различным внутрипородным группам, субпопуляциям и породам, а также эффективные тесты для учёта биологических механизмов «взаимодействия генотипа и среды». Проведенное исследование динамики выживаемости коров чёрно-пёстрой породы с использованием базы данных по 16 региональным производственным подразделениям в Ленинградской области, проведением теоретического анализа и численного моделирования выявило новые аспекты в трактовке параметров функции Гомпертца, которые можно использовать для ранней оценки племенных качеств животных, разработки критериев отбора, количественного прогнозирования и совершенствования управления стадом.

Величина, обратная интенсивности выбытия на первой лактации, характеризует потенциал жизнеспособности данной группы животных; различия в уровне жизнеспособности, сформированном к началу репродуктивной деятельности, могут определять (в среднем по группе или популяции) различия в показателях продолжительности продуктивной жизни животных.

Для получения достаточного поголовья молочного скота оптимального типа необходимо создавать систему мониторинга внешних воздействий и физиологического статуса животных на всех этапах онтогенеза, а также соответствующие технологии архивации и анализа данных для поиска прогностических тестов и разработки эффективных селекционных стратегий.

#### ЛИТЕРАТУРА

- 1. Вайсерман А.М., Войтенко В.П., Мехова Л.В. Эпигенетическая эпидемиология возраст-зависимых заболеваний // Онтогенез, 2011, 42(1): 30-50.
- 2. Один В.И. Кризис геронтологии: к вопросу о первичном здоровье в XX веке // Успехи геронтологии, 2011, 24(1): 11-23.
- 3. Черепанов Г.Г., Михальский А.И., Новосельцева Ж.А. Оценка параметров выживаемости для составляющих неоднородной популяции продуктивных животных: анализ проблемы, варианты приближённого решения // Проблемы биологии продуктивных животных. 2017, 4: 81-95.
- 4. Cherepanov G.G. Prediction of viability of cows: a new look at the old problem // Agr. Res. Techn. Open Access J. 2018, 14(5) DOI: 10.19080/ARTOAJ.2018.14.555931
- 5. Odent M. Primal Health. London: Century Hutchinson, 1986.