

Ген бета-лактоглобулина крупного рогатого скота – объект для модификаций с использованием технологии геномного редактирования

Колоскова Е.М., Езерский В.А.

Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных — филиал ФГБНУ «Федеральный научный центр животноводства — ВИЖ имени академика Л. К. Эрнста».

Внесение модификаций в геном с/х животных *для увеличения объёмов производства и получения продуктов питания* с заданными свойствами – перспективное направление биотехнологии. За последние 30 лет были созданы трансгенные коровы для:

- увеличения доли бета- и каппа-казеина в молоке,
- повышения устойчивости к болезням,
- увеличение мясной продуктивности.
- экспрессии с молоком белков фармацевтического назначения.

Основной недостаток классического трансгенеза –

непредсказуемость места интеграции трансгена в геном и количество встроенных копий.

Трудности, связанные с получением трансгенного домашнего скота:

- сбор и созревание гамет;
- введение реагентов редактирования,
- клонирование и перенос эмбрионов синхронизированным суррогатным матерям;
- мозаичное потомство с последующим разведением для получения ГМ животных длительный и дорогостоящий процесс.

Появление идеи животных-продуцентов биологически активных белков с молоком (молочная железа – биореактор) связано с исследованиями генов белков молока.

Генная конструкция для тканеспецифической экспрессии рекомби-нантных белков в молочной железе содержит:

- 5'-область гена белка молока с промотором, тканеспецифичными энхансерами, первыми некодирующие экзонами и расположенными между ними интронами;
- 3'-нетранслируемую область, содержащую последние некодирующие эк-зоны и интроны, сайт полиаденилирования и прилежащие последовательно-сти, потенциально способные усиливать терминацию транскрипции.

Ген **β-лактоглобулина** (*BLG*) овец, коз, крупного рогатого скота - удобный объект для оценки видо-, тканеспецифичности его экспрессии, изучения роли его регуляторных регионов в эффективности как собственной экспрессии в качестве трансгена, так и экспрессии генов других белков.

Регуляторные элементы гена BLG КРС мы использовали при создании генных конструкций, содержащих кДНК лактоферрина человека или геномную копию Г-КСФ человека. С целью селекции трансгенных эмбрионов на предымплантационной стадии в плазмиды вводили ген зеленого флуоресцентного белка под цитомегаловирусным промотором.

Разведение, селекция КРС ведется в трех направлениях – мясное, молочномясное и молочное с целью получения продукции нужной категории.

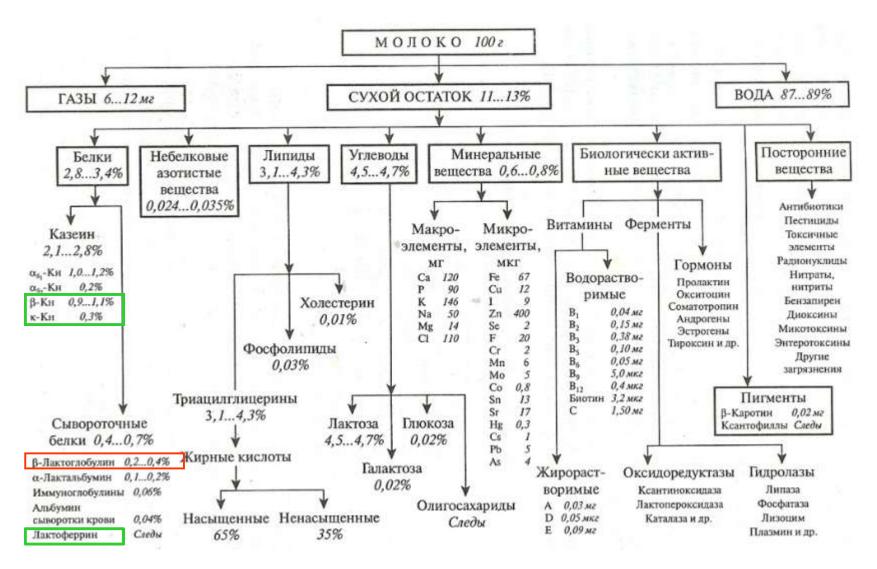
Современные технологии редактирования генов (ZFN, TALEN, CRISPR/Cas9) становятся инструментом в **эволюции селекции животных** за счет уменьшения интервалов генерации необходимых мутаций в гаметах in vitro.

Цели редактирования генома у сельскохозяйственных животных:

- выяснение функции генов и выявление причинно-следственных связей основных продуктивных показателей,
- точное введение полезной генетической модификации в программах разведения поголовья скота с заданными характеристиками:
 - исправление генетических дефектов,
 - инактивация нежелательных генов,
 - перенос полезных аллелей генов между породами.

Технология **CRISPR/Cas9** с использованием механизма прямой гомологичной рекомбинации (HDR) и негомологичного соединения концов (NHEJ) – эффективный метод изменения и коррекции состава молока замещением или нокаутом генов эндогенных молочных белков у сельскохозяйственных животных.

Коровье молоко - наиболее распространенный пищевой аллерген. Сенсибилизация к белкам молока является началом формирования ряда патологических процессов, таких как бронхиальная астма, крапивница, атопический дерматит, дисфункции желудочно-кишечного тракта. Пищевая аллергия в ряде случаев предшествует развитию выраженной пыльцевой аллергии.


β-Лактоглобулин, белок молочной сыворотки, - основной молочный аллерген. Нокаут гена БЛГ с помощью технологий генного редактирования полностью решает проблему создания гипоаллергенных молочных продуктов.

В 2017 году посредством микроинъекции зигот CRISPR/Cas9компонентов были созданы *BLG*-нокаутные козы.

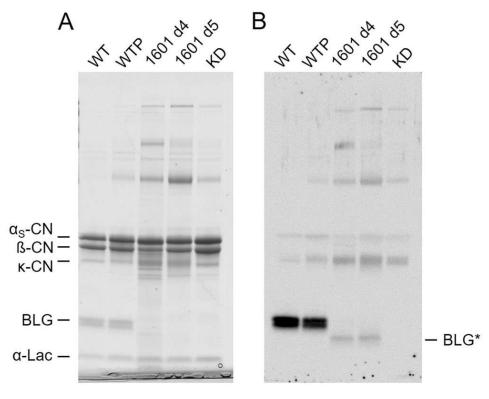
Сообщений о получении КРС с модифицированным геном *BLG* с применением системы CRISPR/Cas9 пока не найдено.

Химический состав коровьего молока

Концентрация БЛГ в молоке КРС – до 4,6 г/л.

Работы по модификации гена бета-лактоглобулина КРС и коз, завершившиеся получением редактированного потомства

Вид	Тип клеток	Метод	Модификация/ механизм (ДНК матрица)	Редактор	Ссылка
КРС	ФФБ	SCNT	KO/ NHEJ	ZFN	Yu et al., 2011
	ФФБ	SCNT	KO/ NHEJ	ZFN	Sun et al., 2018
	зиготы	ЦПМИ	KO/ HDR ssODN	TALEN	Wei et al., 2018
Козы	ФФБ	SCNT	KI, KO/ HDR (ген лактоферрина человека в локус BLG)	TALEN	Cui et al., 2015
	ФФБ	SCNT	KI, KO/ HDR (ген лактоферрина человека в локус BLG)	TALEN	Song et al., 2016
	УФБ и ФФБ	ФФБ SCNT KI, KO/ HDR (ген альфа лактальбумина человека в локус BLG)		TALEN	Zhu et al., 2016
	Зиготы	ЦПМИ	KO/ NHEJ	CRISPR/ Cas9	Zhou et al., 2017


Примечание. ФФБ - фетальные фибробласты; УФБ – ушные фибробласты; SCNT (Somatic cell nuclear transfer) - перенос ядра соматической клетки; ЦПМИ – цитоплазматическая инъекция; NHEJ — Негомологи́чное соедине́ние концо́в; HDR — гомологией направленная репарация; ssODN — одноцепочечный олигонуклеотид; KO — нокаут; KI — введение генов; ZFN, TALEN, CRISPR/Cas9 — эндонуклеазные методы редактирования генов.

TALEN-модификация гена BLG

Α															IJ															
g	ccA1	GAA	GTG	GCC1	rcc1	GCI	TGC	CCI	GGC GGC	CCI	CAC	CTC	TGG TGG	CG(CCCA	GGC GGC	CCT	CAT	CGI TGI	CAC	CCA	GAC GAC	CAT	GAA	GGG	CC1	r/- r/-			WT-A WT-B ODN 98
В						1																								
9	cc A I	GAA	GTO	CC1	rcc1	GCI	TGC	CCI	'GGC	CCT	CAC	YT-			A	G GC	CCT	CAT	YGT	CAC	CCA	GAC	CA1	"GAA	GGG	CC1	[/-	/GSC	• • •	9 bp Δ
g						1 GCI												T						k rgaa			r/-	/GSC		21 bp ∆
	m	k	C	1	1	1	а	1	а	1	t	а	ğ	а									m	k	g	L				
9	CCAI	GAA	GTG	GCC1	rcc1	GCI	TGC	CCI	GGC	CCI	CAC	YTC	TGG	CG-									CAT	GAA	GGG	CCI	-/1	/GSC	• • •	24 bp Δ
																						(K			r/-	/GSC		66 bp A

- А) Последовательности гена BLG основных полиморфов: А и В с сайтами связывания TALEN и местом расщепления (стрелка). Выровненная HDR-матрица (ODN 986) содержит два Y- и один S-нуклеотид в трех сайтах полиморфизма. Сайт распознавания рестриктазы Sfol. Выделены **ATG** и стоп-кодон (**TGA**).
- В) Выровненные последовательности отредактированных аллелей, показывающие конечные точки четырех идентифицированных делеций (9, 21, 24 и 66 Δ). Сверху соответствующие аминокислотные последовательности в однобуквенном коде: аминокислоты сигнального пептида, АМИНОКИСЛОТЫ зрелого белка.

Телочка 1601 в возрасте 19 месяцев, полученная TALEN технологией редактирования, методом цитоплазматической микроинъекции зигот (кроме нее получен

бычок 1602).

Содержание BLG в молоке КО BLG телочки №1601.

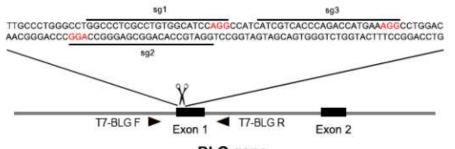
- А) SDS-ПААГ-электрофорез;
- B) вестерн-блотт анализ SDS-ПААГ разных проб молока:

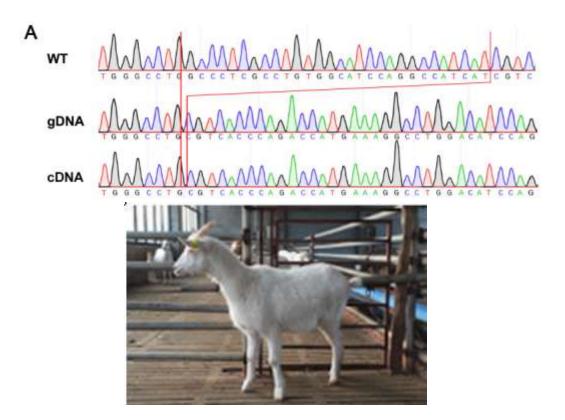
WT – молоко от одной коровы дикого типа; WTP - объединенная проба молока от нескольких коров дикого типа; 1601 d4 и d5: образец молока от 1601 года на четвертый и пятый день индуцированной лактации;

KD - молоко линии KO BLG KPC. Наблюдаются все основные молочные белки и укороченные формы BLG (BLG*).

1601

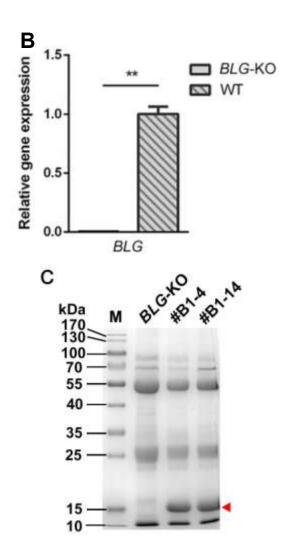
Получение генно-модифицированных коз (ген BLG) с помощью микроинъекции CRISPR/Cas9 компонентов




Схема - конструкция sgRNA для локуса BLG козы.

R	LG	a	0	n	0
_	_0	ч	•	.,	c

sgRNA(ng/μL)	Cas9 mRNA (ng/µL)	Injected embryos/ Transferred embryos	Recipients/ Pregnancies	Newborns	Targeted (%)
sg1(10)	20	36/27	10/5	8	1 (12.5%)
sg2(10)		48/29	10/5	7	0 (0%)
sg2+sg3 (25+25)	100	59/15	15/3	4	1 (25.0%)
sg2+sg3* (50+50)	200	50/32	32/5	7	2 (28.6%)


Результаты секвенирования BLG-модифицированных козлят

Анализ генотипа и экспрессии BLG в молоке и молочной железе.

- A) сравнение целевой области gDNA в молочных железах коз BLG KO (#B1-2) и WT, а также кДНК BLG KO.Красные линии указывают на делецию 29 пн в локусе BLG.
- В) анализ экспрессии BLG при индуцированной лактации.
- С) анализ сывороточного белка из гормонально индуцированного козьего молока. Красный треугольник WT BLG.

Сообщений о получении КРС с модифицированным геном *BLG* с применением системы CRISPR/Cas9 не найдено.

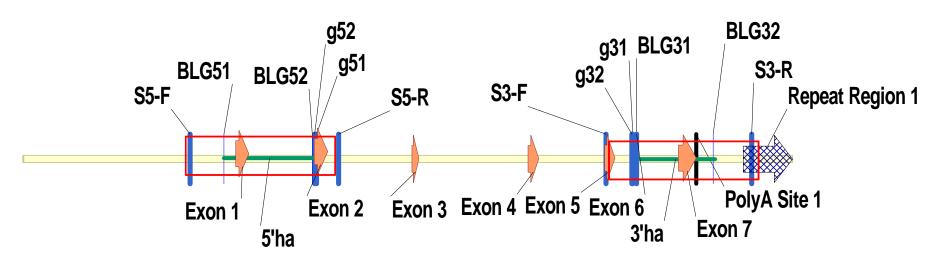
Точное встраивание трансгена в составе генной конструкции, содержащей плечи гомологии к гену *BLG*, обеспечит его экспрессию под управлением полноразмерных эндогенных регуляторных последовательностей.

Цели и задачи наших исследований:

- 1. Создать плазмиду, содержащую плечи гомологии к областям гена *BLG* КРС с тем, чтобы в нее можно было интегрировать ДНК-последовательность целевого белка.
 - создать модельную генетическую конструкцию, содержащую ген GFP под CMV промотором для интеграции гомологичной рекомбинацией в локус гена BLG при совместной микроинъекции в зиготы с сайт-специфичными компонентами системы CRISPR/Cas9.
- 2. Разработать *стратегию модификации* гена BLG KPC с использованием технологии CRISPR/Cas9 с целью нокаута и сайт-специфической интеграции гена маркерного белка.
- 3. Разработать *стратегию анализа* возможных генетических модификаций (NHEJ, HDR), возникших в результате работы компонентов системы CRISPR/Cas9 и ГИК, у эмбрионов в условиях in vitro.

Для достижения цели требовалось:

 подобрать последовательности направляющих РНК (нРНК) к гену BLG КРС.


Сиквенс и рестриктный анализ клонированных последовательностей гена BLG быка «Мороз» черно-пестрой породы показал наличие **А-аллеля**, тогда как опубликованные в базе данных GenBank записи X14710 и Z48305 (B.taurus gene for beta-lactoglobulin variant B) соответствуют B-аллелю.

- разработать систему ПЦР-анализа возможных вариантов внесенных изменений для конкретного аллельного варианта *BLG* для осуществления его модификаций (нокаут гена локальными инделями или крупной делецией)

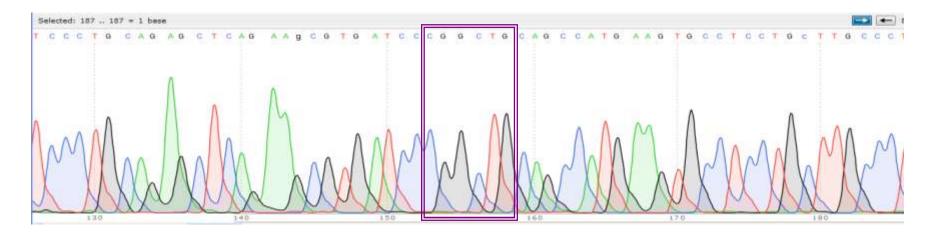
Подбор протоспейсерных последовательностей для создания направляющих РНК подбирали с использованием on-line программ CHOPCHOP < http://chopchop.cbu.uib.no/>, CRISPR direct < http://crispr.dbcls.jp/>, CRISPOR v.4.8. http://crispor.tefor.net/ с учетом секвенированной последовательности (**A-аллеля гена BLG**).

Полиморфизм гена *BLG* может стать причиной низкой эффективности работы компонентов CRISPR/ Cas9: на мясокомбинатах яичники КРС отбирают от коров разных пород. В экспериментах *in vitro* оплодотворение яйцеклеток, как правило, производится спермой одного быка.

Схема гена BLG КРС: подбор плечей гомологии для создания ДНКматрицы гомологичной рекомбинации.

Указаны сайты связывания используемых праймеров, локализация протоспейсерных последовательностей.

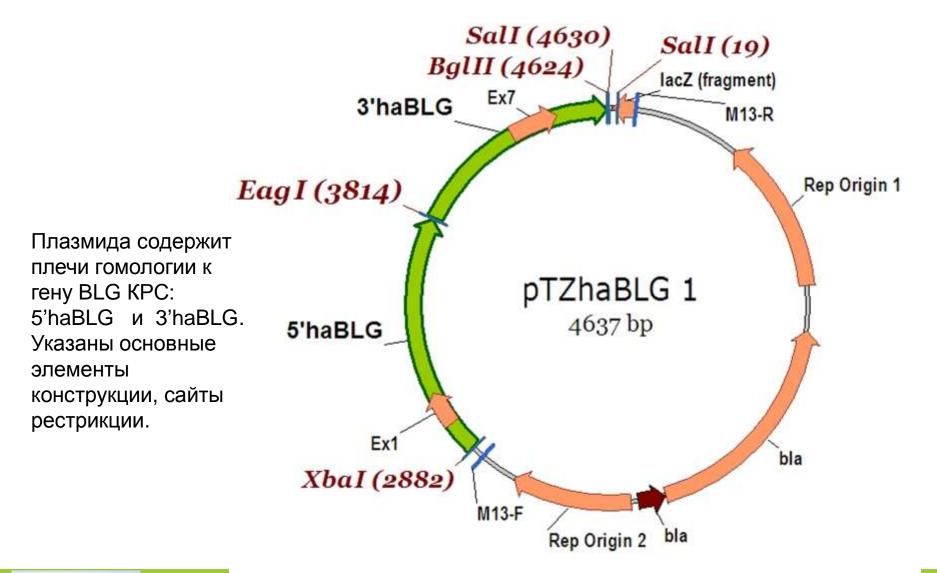
Красными рамками выделены последовательности для секвенирования.


Классический способ генотипирования гена BLG КРС — поиск полиморфизма, в области 1-го экзона и интрона, в 4-м экзоне.

Полиморфизм гена BLG геномной ДНК быка «Мороз» определяли с использованием одной из пар наших праймеров и рестриктазы Pvull. ПЦР-амплификат размером 1195 п.н. после обработки Pvull на электрофорезе в агарозном геле показал два фрагмента, соответствующие 743, 452 п.н. – **А-аллель**

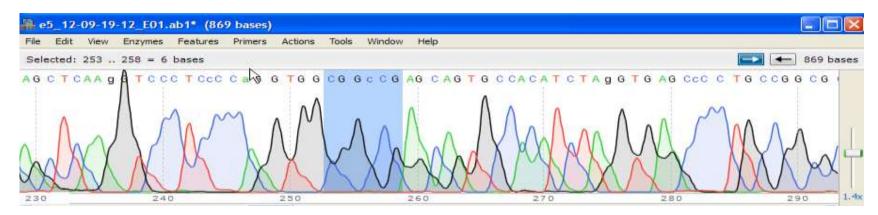
Определение полиморфизма гена BLG быка «Мороз»)

	Размеры фрагментов, п.н.						
Фрагменты	Праймер1/Праймер2 [из: <i>Гладырь, 2001</i>]	BLG51/S5-R (использовали)					
ПЦР-амплификат	1248	1195					
Pvull рестрикты для A -аллеля	774, 474	743, 452					
Pvull рестрикты для B -аллеля	774, 297, 177	155, 297, 743					

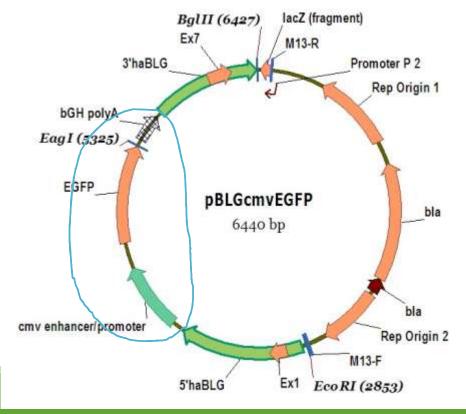

Фрагмент секвенированной последовательности pTZhaBLG, содержащий участок полиморфизма в области 1-го экзона гена BLG (выделен рамкой).

Сиквенс и рестриктный анализ клонированных последовательностей гена *BLG* быка «Мороз» черно-пестрой породы показал А-аллель, тогда как опубликованные в базе данных GenBank записи X14710 и Z48305 (B.taurus gene for beta-lactoglobulin variant B) соответствуют В-аллелю.

Схема плазмиды-матрицы pTZhaBLG, созданной на основе pTZ57R/T.



Рекомбинантная плазмида *pTZhaBLG*, содержащая плечи гомологии к гену BLG крупного рогатого скота, может быть использована для клонирования по Eagl сайту ДНК целевого биологически активного белка с перспективой получения относительно простым *методом микроинъекции* зигот трансгенного КРС, продуцирующего рекомбинантные белки с молоком вместо β-лактоглобулина – при использовании *CRISPR/Cas9* технологии.



Фрагмент секвенированной последовательности pTZhaBLG, **содержащий участок соединения** 5'- и 3'- плечей гомологии к гену BLG.

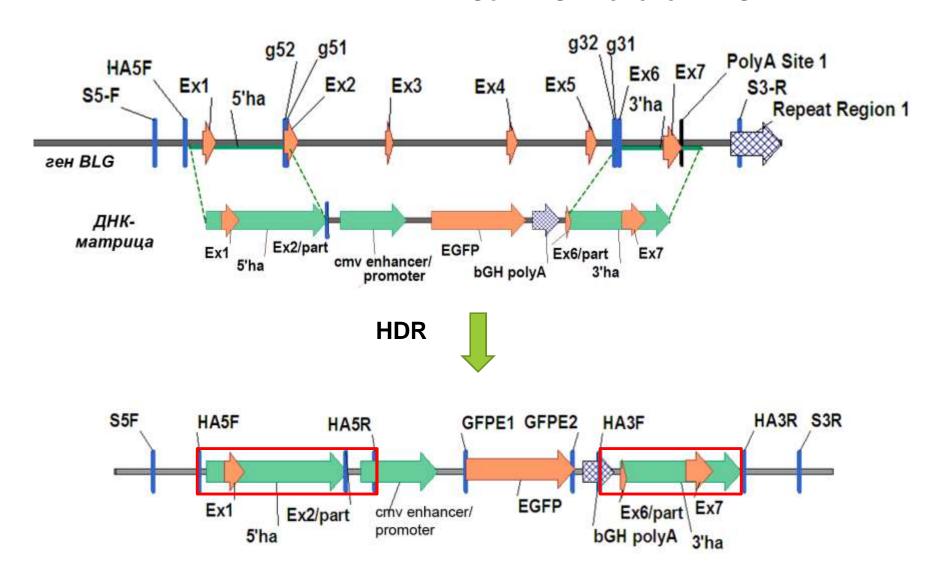

Плазмида **pTZhaBLG** содержит уникальный сайт для Eagl, который можно использовать для клонирования ДНК целевого белка

Схема модельной плазмиды pBLGcmvEGFP, созданной на основе pTZhaBLG.

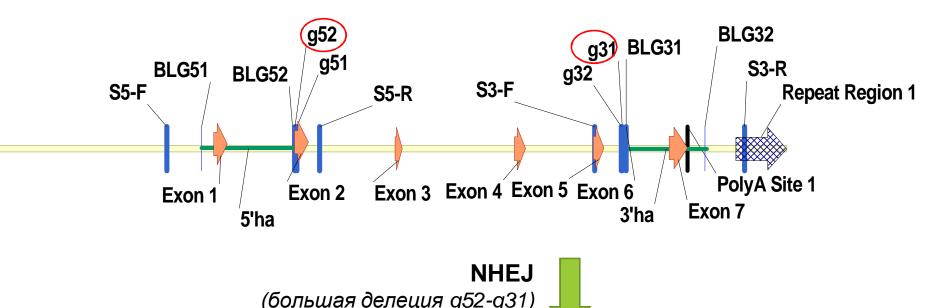
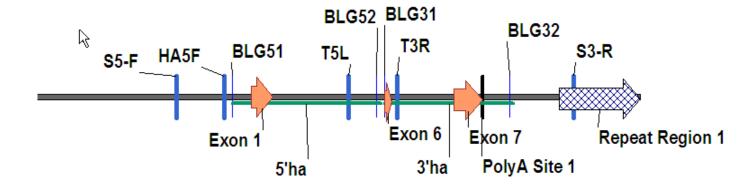


Схема гомологичной рекомбинации генной конструкции BLGcmvEGFP с геном BLG.



Вариант репарации негомологичным соединением концов.

ПЦР-анализ модификаций гена BLG, полученных с использованием компонентов CRISPR/Cas9 системы и HDR-матрицы

A pair of	Amplificatio	n product size, bp	Detection
primers	WT animal	Genetically modified animal	
T5L / T5R	490	< 490 (∆G51/G52)	Small deletions,
T3L /T3R	397	< 397 (∆G31/G33)	PAAG
T5L / T3R	3598	≈ 320 for ∆G51(G52)/G31(G32)	Large deletions, AG
HA5F /HA5R	-	1179 (5'HA for HDR)	AG
HA3F/ HA3R	-	972 (3'HA for HDR)	AG

Результаты

- 1. Разработана *стратегия модификации* гена *BLG* КРС для его нокаута и сайт-специфической интеграции гена маркерного белка с использованием технологии CRISPR/Cas9.
- 2. Разработана *стратегия анализа* возможных генетических модификаций, возникших в результате работы компонентов системы CRISPR/Cas9 и ГИК, микроинъецированных в зиготы (NHEJ, HDR).

Получены генетические конструкции:

- βLGcmvEGFP для направленной интеграции рекомбинантного гена EGFP под контролем CMV промотора в геном КРС под контроль промотора гена бета-лактоглобулина (βLG).
 - компоненты системы CRISPR/Cas9 в плазмидной форме на основе рX330, кодирующей Cas9 и гРНК для гена βLG КРС (по две плазмиды к его 5'- и 3'- областям. На основе этих плазмид могут быть созданы компоненты CRISPR/Cas9 в РНК форме.

