

«АГРАРНАЯ НАУКА – СЕЛЬСКОМУ ХОЗЯЙСТВУ»

XVII МЕЖДУНАРОДНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

N-КАРБАМОИЛ ГЛУТАМАТ ПОЛОЖИТЕЛЬНО ВЛИЯЕТ НА МИКРОБИОТУ РУБЦА ТЕЛЯТ- МОЛОЧНИКОВ

Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных — филиал ФГБНУ «Федеральный научный центр животноводства — ВИЖ имени академика Л. К. Эрнста».
Боровск, Калужская обл., РФ

Докладчик Колоскова Елена Михайловна

Барнаул | 2022

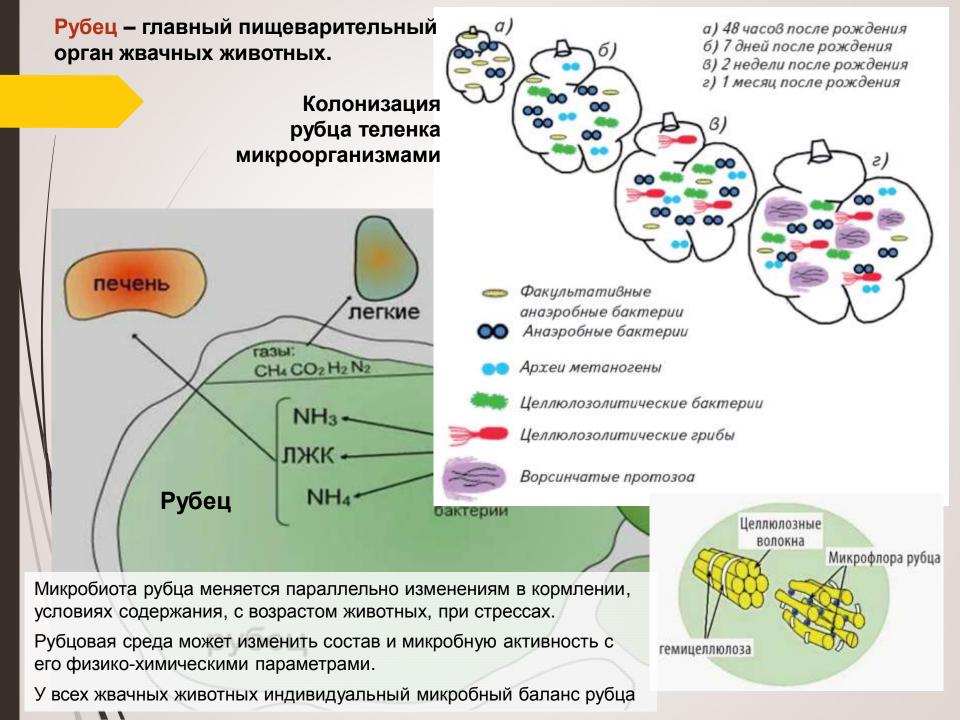
Повышение эффективности мясного и молочного животноводства тесно связано с совершенствованием технологий кормления животных.

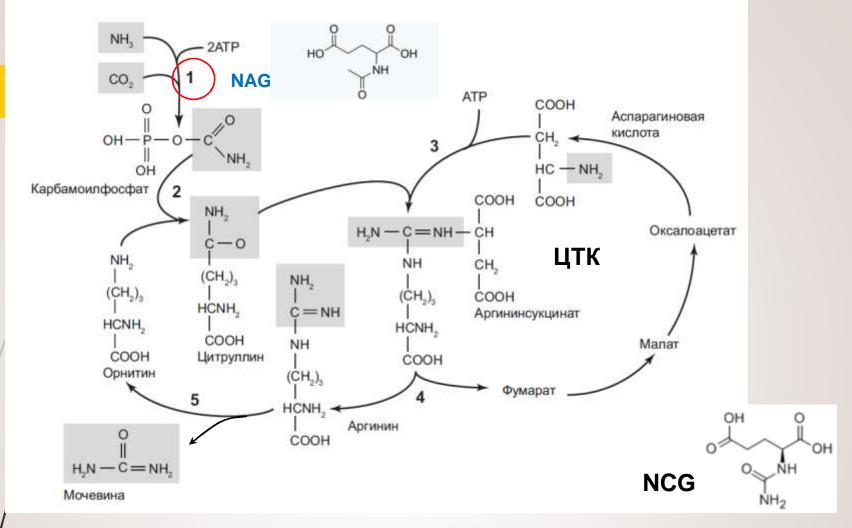
Оптимизация *протечнового питания* и обменных процессов в организме жвачных животных путём создания условий для эффективного использования азотистых компонентов корма, снижение выброса неиспользованного азота с экскрементами являются актуальной задачей сельскохозяйственной науки.

Протеин корма состоит из белков и амидов. Протеин – незаменимый источник аминокислот для синтеза белка животного происхождения. Амиды — это небелковая часть протеина, имеющая значение для жвачных животных.

Протеиновый обмен - неотъемлемая часть *азотистого обмена*, конечными продуктами которого являются *мочевина и аммиак.*

Аммиак - токсичное соединение. Его предельно допустимый уровень в крови 60 мкмоль/л. Уровень интермедиатов цикла мочевины, в том числе токсичного аммиака, можно регулировать, воздействуя на активность ключевых ферментов цикла.


N-карбамоилглутамат (NKГ) (неметаболизируемый аналог N-ацетилглутамата, аллостерического активатора первой ферментативной реакции цикла мочевины) — эффективный агонист и регулятор карбамоилфосфатсинтетазы-1.


Особенно важно это для жвачных животных:

- 1) микробиота рубца в результате ферментации протеинов корма выделяет аммиак
- 2) микробиота рубца способна утилизировать мочевину.

NКГ активизирует цикл мочевины, его применение в качестве кормовой добавки обеспечивает более полную конверсию азота мочевины и аммиака в эндогенный белок и повышает мясную продуктивность сельскохозяйственных животных.

NКГ достоверно улучшает показатели роста и развития телят, однако, его влияние на микробиоту рубца и других отделов ЖКТ практически не изучено.

Орнитиновый цикл и его взаимосвязь с циклом трикарбоновых кислот. Протекает в клетках печени: первые две реакции в митохондриях, остальные — в цитозоле. Начинается с образования богатого энергией карбамоил-фосфата в присутствии N-ацетилглутаминовой кислоты (NAG, кофактор), при участии фермента карбамоилфосфатсинтетазы 1 (1). Карбамоилфосфат в реакции с орнитином образует цитруллин (2 — орнитинтранскарбамоилаза). Цитруллин и аспарагиновая кислота (из ЦТК) образуют аргининосукцинат (3 — аргининсукцинатсинтетаза), расщепляющийся на фумаровую кислоту (в ЦТК) и аргинин (4 — аргининсукцинатлиаза). Аргиназа (5) расщепляет аргинин на мочевину и орнитин, способный вновь поступать в митохондрии и запускать новый оборот цикла мочевины.

Цель исследований:

получение новых знаний о формировании микробиоты рубца телят-молочников, с использованием или без добавки NCG, катализирующей эффективность утилизации аммиака и других продуктов распада азотсодержащих продуктов.

Длительность эксперимента — 30 суток. Возраст телят в начале опыта — 1 месяц.

Группа	Голов в группе	Характеристика кормления
Контрольная	8	Основной рацион (ОР)
Опытная	8	OP +20 мг NCG на кг живой массы

Выделение ДНК из рубцового содержимого

T-RFLP анализ выполнен на Beckman Coulter CEQ-8000 Analyzer (США), обработка пиков - в программе Фрагмент Энелайзиз («Beckman Coulter», США) в ООО «Биотроф».

Основной рацион (ОР):

Сено разнотравное – 0,2 кг (утро) и 0,2 кг (вечер).

Комбикорм – 1,0 кг (утро) и 1,0 кг (вечер).

Заменитель цельного молока – 3,0 л (утро) и 3,0 л (вечер).

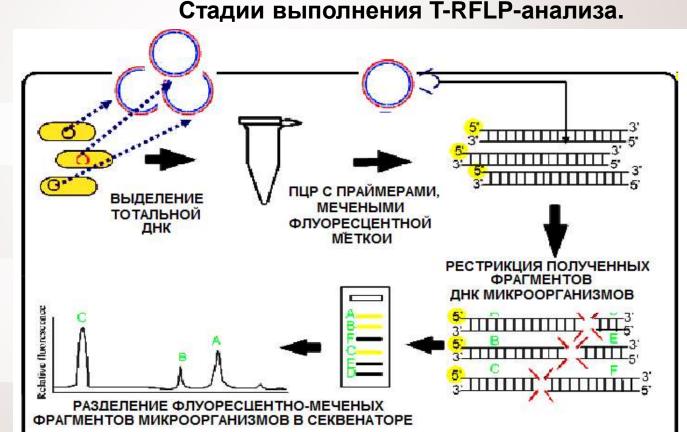
Вода – в свободном доступе.

Таблица 1. Основные показатели ЗЦМ LOGAS MILK эконом плюс

	Компонент	Единица измерения	Показатель	Компонент	Единица измерения	Показатель
	Энергетическая ценность		Витаминная группа			
	Обменная энергия	Мдж/кг	16,0	Витамин А, не менее	МЕ/кг	40000
Структура			Витамин D3, не менее	МЕ/кг	1000	
	Белок, не менее	%	20,0	Витамин Е, не менее	мг/кг	150
	Жир, не менее	%	16	Витамин С, не менее	мг/кг	150
	Клетчатка	%	2,5	Витамин В1, не менее	МГ/КГ	6
/	Лактоза, не более	%	20,0	Витамин В2, не менее	МГ/КГ	6,0
	Микро, макроэлементы			Витамин В5, не менее	мг/кг	87,5
	Железо (Fe), не менее	мг/кг	85,0	Витамин В4, не менее	мг/кг	200,0
	Цинк (Zn), не менее	мг/кг	126,0	Витамин В3, не менее	МГ/КГ	50,0
	Марганец (Mn), не менее	мг/кг	126,0	Витамин В6, не менее	мг/кг	4,0
	Медь (Cu), не менее	МГ/КГ	12,5	Биотин (вит. Н), не менее	МГ/КГ	37,5
	Йод (I), не менее	мг/кг	2,5	Витамин К, не менее	мг/кг	4,0
	Селен (Se), не менее мг/кг 0,1		Аминок	ислоты		
	Кальций (Са), не менее	г/кг	6,0	Лизин, не менее	%	1,24
	NaCL, не менее	г/кг	1,3	Метионин, не менее	%	0,38
	Фосфор (F), не менее	г/кг	7,0	Метионин+цистин, не менее	%	0,68

Мишень: ген 16S pPHK

Последовательность гена 16S рРНК используется в исследовании филогенетики бактерий и архей, применяется для медицинских исследований патогенных бактерий.


ПЦР

V1V9 – амплификаты, около 1400 п.н.

Pестрикция: HaeIII, HhaI и MspI.

Результат:

множество меченых рестриктных фрагментов разного размера

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Результаты взвешивания телят молочников

	вес телят, кг			
Группы	до исследования	через 30 дней	среднесуточный привес*	
Контроль	$73,4 \pm 2,41$	83.8 ± 3.42	0.35 ± 0.07	
Опытная группа	72,0 ± 1,34	88,0 ± 1,87	$0,49 \pm 0,09$	

^{*}Норма привесов молодняка голштинской породы в возрасте 0-2 мес 620-650 г/сутки

Отъем – один из самых сильных стрессов в жизни теленка. происходит изменение режима питания, температуры, меняются внешние условия содержания. Отъем часто совпадает с транспортировкой телят. Множественные стрессы, возникающие в этих новых условиях существования, легко приводят к различным заболеваниям телят: респираторным, желудочно-кишечным – в первую очередь

Содержание основных целлюлозолитических бактерий в рубце телят опытной и контрольной

ı pyıllı,	7

*p < 0,05; ** p < 0,01;

	Контроль	NCG	Референсные значения (по Ильиной, 2017)
Ruminococcaceae	4,07 ±1,22	8,87 ±3,43*	не < 5
Eubacterium	6,84 ± 2,34	7,24 ±1,54	не < 2
<u>Lachnospiraceae</u> (Butyrivibrio)	3,06 ± 0,63	4,84 ±0,75*	не < 2
Clostridiaceae	1,54 ± 0,32	3,78 ±0,63**	не < 5
Bacteroides	2,47 ± 0,81	4,24 ±1,62	4-8%
Prevotella	0.73 ± 0.32	0,90 ±0,53	
Прочие	0.06 ± 0.04	0,20 ±0,18	
Итого:	18,77 ± 1,54	30,08 ±3,05**	не < 20
Целлюлозолитическая активность, %	11,06 ± 0,35	12,77 ± 0,71*	
Содержание инфузорий, тыс.шт./г	114,6 ± 1,1	106,0 ±0,5**	

Содержание и функции микроорганизмов в пробах рубца телят (*T-RFLP*-анализ), %

Микроорганизм	Роль микроорганизма	Контроль	NCG	
	Нормофлора			
Целлюлозолитики (сем. Lachnospiraceae, Ruminococcaceae, Eubacteriaceae, Clostridiaceae и др.)	«Полезные» микроорганизмы, расщепляющие растительную клетчатку и другие углеводы кормов	18,77 ± 1,54	30,08 ± 3,05*	
Селеномонады (Veillonellaceae, <u>Selenomonadaceae</u>)	Способны разлагать органические кислоты, в том числе лактат	10,88 ± 1,44	9,30 ± 2,36	
Bacillaceae	Обладают антимикробной активностью в отношении патогенных микроорганизмов и др. полезными свойствами	26,41 ± 2,44	21,85 ± 6,00	
Bifidobacterium sp.	Обладают антимикробной активностью в отношении патогенных микроорганизмов	0,69 ± 0,12	0,94 ± 0,25*	
Нежелательная или условно-патогенная микроф				
Lactobacillaceae	Ферментируют моносахара до молочной кислоты, снижение рН рубца	5,01 ± 2,22	2,29 ± 0,84	
Энтеробактерии (Enterobacteriaceae)	Могут провоцировать гастроэнтериты	5,67 ± 0,81	4,26 ± 0,93	
Филум Actinobacteria	Могут провоцировать актиномикозы	10,20 ± 1,47	5,74 ± 2,23*	

Содержание и функции микроорганизмов в пробах рубца телят, %

Патогенные микроорганизмы			
Фузобактерии	Возбудитель некробактериоза	1,41 ± 0,69	2,42 ± 0,78
Стафилококки	Возбудители - гнойно-воспалительных процессов, маститов	1,00 ± 0,20	1,01 ± 0,47
Пептококки		0,41 ± 0,19	0,79 ± 0,37
Кампилобактерии		0,20 ± 0,13	0,43 ± 0,20
Пастереллы	Возбудитель пастереллеза	3,19 ± 0,93	1,46 ± 0,61
Микоплазмы	Возбудители микоплазмозов	1,93 ± 0,25	2,10 ± 0,75
	Транзитная микрофлора		
Псевдомонады	Не играют существенной роли	1,11 ± 0,40	2,48 ± 0,45
Некультивируемые	Роль не ясна	13,10 ± 3,45	14,75 ± 3,33

Содержание аммиака и мочевины в крови телят, ммоль/л

		Контроль	NCG	Норма
V	Мочевина ммоль/л	4.8 ± 0.2	3,9 ± 0,2*	3,3 – 6,7
	Аммиак, мкмоль/л	124,8 ± 9,0	59,1 ± 4,3 *	не более 50

Заключение

Впервые показано влияние NCG на состав микробиоты рубца телят молочников. Полученные данные свидетельствуют о том, что введение NCG в дозировках 20 мг/кг живой массы способствует достоверному повышению содержания целлюлозолитической микробиты рубца телят почти на 50% по сравнению с контрольной группой, снижает содержание условно-патогенной микробиоты. Целлюлозолитическая активность рубцового содержимого коррелировала с этими показателями.

На фоне высокого уровня аммиака в крови телят контрольной группы, вероятно, вызванного повышенным содержанием патогенных микроорганизмов у телят обеих групп, использование NCG с кормом позволило не только привести концентрации аммиака и мочевины в крови к нормальным значениям, но и улучшить биохимические и зоотехнические показатели опытных животных.

На основе проведенных исследований впервые получены данные по влиянию N-карбамоил глутамата на микробиоту рубца телятмолочников, исходя из которых можно сделать вывод о том, что NCG способствует повышению защиты микробиоты рубца и организма телятмолочников от негативных стресс-факторов, в частности, при состояниях, близких к гипераммониемии.

Спасибо за внимание!

