

Структура микробиоценоза рубцового содержимого овец романовской породы.

Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных — филиал ФГБНУ «Федеральный научный центр животноводства — ВИЖ имени академика Л. К. Эрнста».

Боровск, Калужская обл., РФ

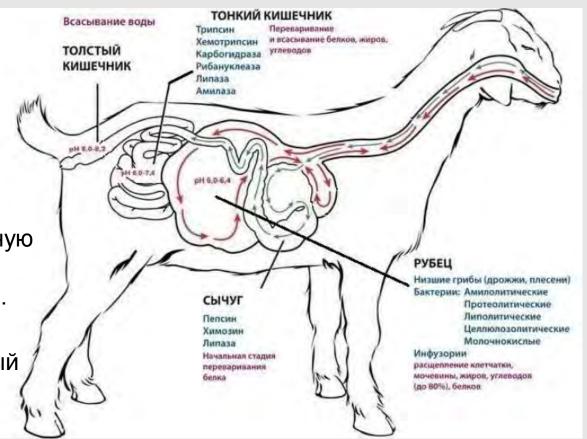
Езерский Вадим Аркадьевич

XV научно - практическая конференция с международным участием «Научные основы устойчивого развития сельскохозяйственного производства в современных условиях»

- 2022 -

Рубец – главный пищеварительный орган жвачных животных

Обладает большим объемом и большой ферментативной ёмкостью.


В ферментация корма участвуют сотни видов специфичных анаэробных микроорганизмов.

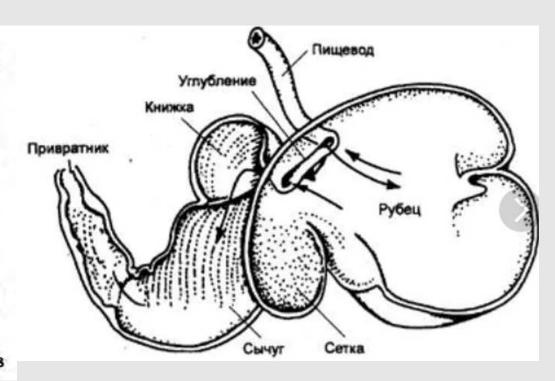
Большинство протеина и энергии для жизнедеятельности жвачных животных производят микробные популяции рубца: это микробная экосистема, существующая в динамическом балансе.

Микрофлора рубца динамична и постоянно меняется параллельно изменениям в кормлении, условиям содержания, с возрастом животных, при стрессах.

Рубцовая среда может изменить состав и микробную активность с его физико-химическими параметрами.

У всех жвачных животных индивидуальный микробный баланс рубца

Типы микробиоты рубца


В одном *миллилитре* содержимого рубца овцы содержится:

1.61 × 1010 бактерий

10⁶ жгутиковых

3.3 × 10⁵ инфузорий

объем желудка овцы 6 литров

Бактерии: около 100 видов, большинство - некультивируемые; общая бактериальная масса рубца составляет около 10% его содержимого;

Простейшие (инфузории): встречается до 120 видов инфузорий: у овец - до 30 видов.

Низшие грибы (дрожжи, плесени): описано 23 вида грибов.

Основные микроорганизмы рубца - функции

Бактерии: около 100 видов, большинство - некультивируемые; общая бактериальная масса рубца составляет около 10% его содержимого; **⋄** целлюлозолитические - расщепляют клетчатку до ди- и моносахаридов;

- *уксусной и* муравьиной кислот);
- ⋆молочнокислые сбраживают простые углеводы (глюкозу, лактозу, мальтозу) сахарозу до молочной кислоты;
- *протеолитические расщепляют белки последовательно до пептидов, аминокислот, аммиака;
- *❖липолитические* расщепляют жиры до глицерина и жирных кислот.

Инфузории: обладают протеолитической и целлюлозолитической способностью, липидосинтезирующей функцией, сбраживают углеводы; они подвергают корм механической обработке, используют для своего питания клетчатку. Инфузории размельчают, разрыхляют корм, он становится более доступным для действия бактериальных ферментов).

Грибы: обладают целлюлозолитической активностью, участвуют в синтезе аминокислот и гликогена, синтезе липидов, сбраживают простые сахара, вырабатывают антибиотики).

Микробиота - сообщество микроорганизмов, населяющих какую-либо нишу организма (например, рубец).

От состояния микробиоты рубца зависит эффективность переваривания кормов, формирование иммунитета, уровень продуктивности и здоровье животных.

Микробиом - совокупность генетического материала микробиоты.

Метагеномика - раздел молекулярной генетики, который изучает набор генов всех микроорганизмов, находящихся в образце среды — метагеноме (микробиоме).

Метагеномный анализ — современный способ определения видового разнообразия исследуемого образца <u>без необходимости выделения и культивирования микроорганизмов.</u>

Цель исследований:

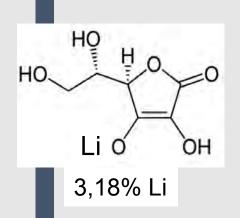
- получить информацию о составе микробиоты рубца овец-ярок романовской породы, находившихся на содержании в условиях вивария;
- выяснить влияние адаптогена аскорбата лития на качественный и количественный состав микробиоты рубца овец с использованием метода NGS.

Длительность эксперимента – 60 суток

Группа	Голов в группе	Характеристика кормления
Контрольная	8	Основной рацион (ОР)
Опытная	8	OP +10 мг LiAsc на кг живой массы

Выделение ДНК из рубцового содержимого

Метагеномное секвенирование выполнено в ООО «Биотроф» на геномном секвенаторе MiSeq («Illumina, Inc.», США)

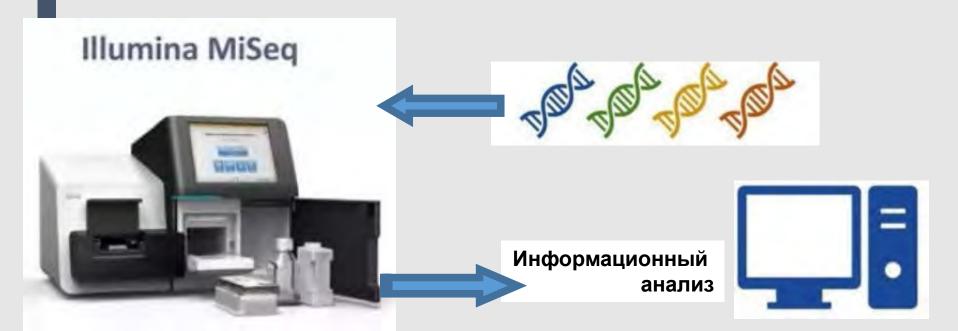


Аскорбат лития – органическая соль лития, где в одной молекуле содержатся два активных действующих вещества – аскорбиновая кислота и литий – обладающие синергетическим эффектом. Безопасен, эффективен в низких дозах и обладает широким спектром активности, несвойственным другим солям лития.

Основной рацион: концентрат – 500 г, сено разнотравное 1,5 кг

Состав гранулированного комбикорма-концентрата «Комбикорм для коз и овец КК-85 (МРС)»

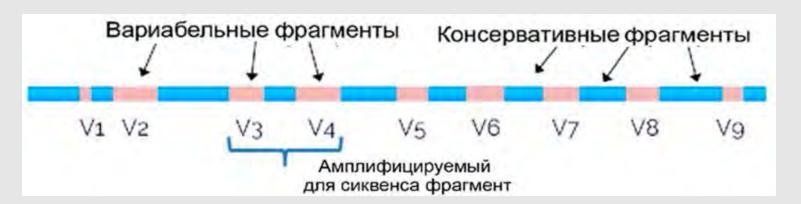
Состав рецепта		Дополнительно введено витаминов и микроэлементов в 1 кг комбикорма	
Наименование	%	Наименование, ед.изм	значение
Овес	15,0	Fe, мг	25,0
Ячмень	46,0	Си, мг	2,5
Масло подсолнечное	1,0	Zn, мг	30,0
Отруби пшеничные	16,0	Mn, мг	40,0
Шрот подсолн., СП36%, СК 19	15,5	Со, мг	1,0
Травяная мука	5,5	I, мг	1,0
Дефторированный фосфат	2,0	Se, мг	0,15
Известняковая мука	3,0	Витамин А, тыс.МЕ	10,0
Премикс	0,5	Витамин D3, тыс.МЕ	1,0
Соль поваренная	1,0	Витамин Е, мг	10,0
		S	100,0


Методология.

NGS (next generation sequencing) — секвенирование нового поколения: определение нуклеотидной последовательности ДНК или РНК.

Принцип технологии NGS основан на массовом одновременном секвенировании тысяч фрагментов ДНК на базе подготовленных одноцепочечных библиотек.

Методы позволяют выполнять одновременное считывание миллиардов коротких фрагментов нуклеиновых кислот.


Метагеномное секвенирование позволяет определить состав микроорганизмов в исследуемом образце, например, в рубцовом содержимом.

Мишень: ген 16S pPHK

16S рРНК — один из трёх основных типов рРНК, образующих основу рибосом прокариот. Последовательность гена 16S рРНК используется в исследовании филогенетики бактерий и архей, применяется для медицинских исследований патогенных бактерий.

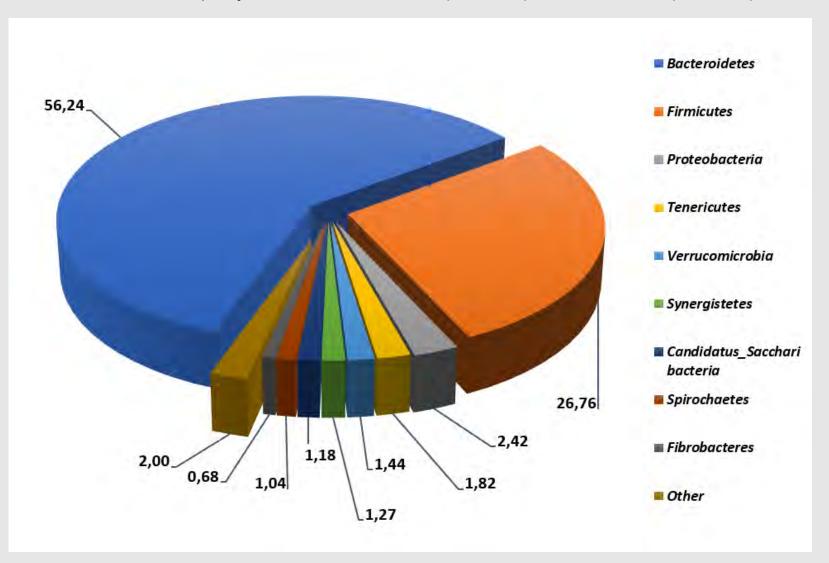
Первичная структура гена 16S pPHK

ПЦР с праймерами к консервативным фрагментам. Результат: V3V4 - амплификаты размером около 460 п.н.

Таксономическая иерархия микроорганизмов рубца овец на основе результатов NGS секвенирования

Домен «Bacteria» (эубактерии)	Домен «Archaea» (архебактерии)
 бактерии с тонкой клеточной стенкой, грамотрицательные бактерии с толстой клеточной стенкой, грамположительные бактерии без клеточной стенки (класс Mollicutes — микоплазмы) 	Архебактерии не содержат пепти- догликан в клеточной стенке. Они имеют особые рибосомы и рибосомные РНК (рРНК). Среди них нет возбудителей инфекций

Доля бактерий и архей в рубцовом содержимом овец контрольной и опытной групп (% от суммарного количества микроорганизмов)

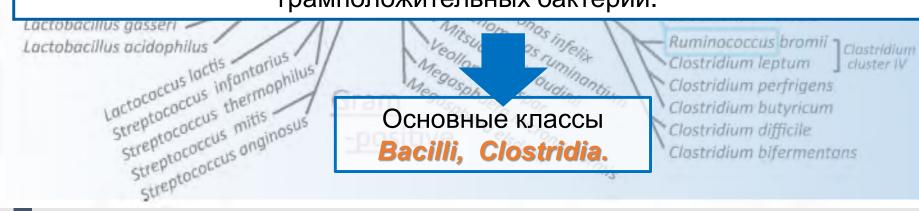

0,015

0,183

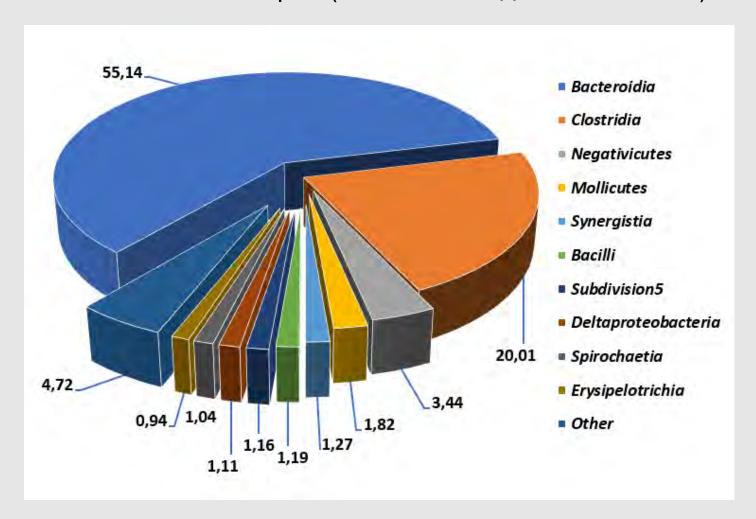
Домен	M ± m	
Bacteria	95,680 ± 0,133	
Archaea	0,183 ± 0,015	

Микробиоту рубца овец представляют 37 **филумов** (типов, отделов) бактерий, из них 8 - с долей выше 1% от суммарного количества микроорганизмов.

Основные филумы - Bacteroidetes (53-60%) и Firmicutes (24-29%)


Филум Bacteroidetes —

тип грамотрицательных неспорообразующих анаэробных палочковидных бактерий, широко распространённых в окружающей среде, включая почву, ил, морскую воду, желудочно-кишечный тракт и кожу животных.



Филум Firmicutes —

тип бактерий с низким содержанием пар нуклеотидов GC (меньше 50 %) и строением клеточной стенки, характерным для грамположительных бактерий.

Микробиота рубца овец была представлена - 73 **классами** бактерий (10 классов с долей выше 1%)

- 98 **порядками (**7 порядков - с долей выше 1%). Основные: **Bacteroidales** — 55,1% и **Clostridiales** — 19,7%

Идентифицировано 225 семейств микроорганизмов. В целом было определено 894 вида микроорганизмов, большинство из которых некультивируемые.

		Контроль	Опыт				
	Группа микроорганизмо		M ± m				
	Нормофлора						
	Целлюлозолитики						
1	Bacteroidetes	55,6 ± 1,1	$57,7 \pm 0,8$				
2	Ruminococcaceae	$12,0 \pm 0,4$	11,9 ± 0,5				
3	Lachnospiraceae	$4,4 \pm 0,2$	3.9 ± 0.07				
4	Eubacteriaceae	$0,48 \pm 0,04$	0,98 ± 0,05				
5	Peptostreptococcaceae	0,02 ± 0,001	0.04 ± 0.006				
6	Clostridiaceae	1,22 ± 0,04	0.95 ± 0.063				
7	Thermoanaerobacterales	$0,02 \pm 0,004$	0,01 ± 0,002				
	Сумма						
	целлюлозолитиков	73,6 ± 0,8	75,4 ± 0,3 *				
Лактат-утилизирующие							
	Veillonellaceae	2,57 ± 0,15	$2,29 \pm 0,22$				
	Другие						
	Сумма бацилл	0.32 ± 0.053	0,52 ± 0,02 *				
	Bifidobacteriales	$0,003 \pm 0,002$	0,004 ± 0,002				
	Патогены						
	Всего	2,88 ± 0,19	1,57 ± 0,05 *				

Заключение

Предстваители всех таксономических групп микроорганизмов присутствовали в рубцовом содержимом овец опытной и контрольной групп в равномерных количествах.

Введение адаптогена аскорбата лития в основной рацион овец-ярок не изменяет видовой состав микробиоты рубца овец опытной группы, но улучшает его качество, увеличивая долю некоторых микроорганизмов нормофлоры и уменьшая количество патогенов.

Применение аскорбата лития в дополнение к основному рациону овец целесообразно как при удовлетворительных условиях содержания, так и в условиях стресса.

Спасибо за внимание!

